Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Evidence of Geological ‘Facelift’ in the Appalachians

01.02.2013
How does a mountain range maintain its youthful, rugged appearance after 200 million years without tectonic activity? Try a geological facelift – courtesy of the earth’s mantle.

Researchers from North Carolina State University noticed that a portion of the Appalachian Mountains in western North Carolina near the Cullasaja River basin was topographically quite different from its surroundings.

They found two distinct landscapes in the basin: an upper portion with gentle, rounded hills, where the average distance from valley to mountain top was about 500 feet; and a lower portion where the valley bottom to ridgeline elevation difference was 2,500 feet, hills were steep, and there was an abundance of waterfalls. The researchers believed they could use this unique topography to decipher the more recent geologic history of the region.

The Appalachian mountain range was formed between 325 to 260 million years ago by tectonic activity – when tectonic plates underneath the earth’s surface collided and pushed the mountains up. Around 230 million years ago, the Atlantic Ocean basin began to open, and this also affected the regional topography. But geologists knew that there hadn’t been any significant tectonic activity in the region since then.

“Conventional wisdom holds that in the absence of tectonic activity, mountainous terrain gets eroded and beveled down, so the terrain isn’t as dramatic,” says Sean Gallen, NC State graduate student in marine, earth and atmospheric sciences. “When we noticed that this area looked more like younger mountain ranges instead of the older, rounded, rolling topography around it, we wanted to figure out what was going on.”

Gallen and Karl Wegmann, an assistant professor of marine, earth and atmospheric sciences at NC State, decided to look at the waterfalls in the area, because they would have formed as the topography changed. By measuring the rate of erosion for the falls they could extrapolate their age, and therefore calculate how long ago this particular region was “rejuvenated” or lifted up. They found that these particular waterfalls were about 8 million years old, which indicated that the landscape must have been raised up around the same time.

But without tectonic activity, how did the uplift occur? Gallen and Wegmann point to the earth’s mantle as the most likely culprit. “The earth’s outer shell is the crust, but the next layer down – the mantle – is essentially a very viscous fluid,” Wegmann says. “When it’s warm it can well up, pushing the crust up like a big blister. If a heavy portion of the crust underneath the Appalachians ‘broke off,’ so to speak, this area floated upward on top of the blister. In this case, our best hypothesis is that mantle dynamics rejuvenated the landscape.”

The researchers’ findings appear in Geological Society of America Today. Del Bohnenstiehl, NC State associate professor of marine, earth and atmospheric sciences, contributed to the work.

Note to editors: Abstract follows.

“Miocene rejuvenation of topographic relief in the southern Appalachians”

Authors: Sean F. Gallen, Karl W. Wegmann, and DelWayne R. Bohnenstiehl, North Carolina State University

Published: Geological Society of America Today

Abstract:
Conventional wisdom holds that the southern Appalachian Mountains have not experienced a significant phase of tectonic forcing for > 200 m.y.; yet, they share many characteristics with tectonically active settings, including locally high topographic relief, steep slopes, incised river gorges and frequent mass-wasting events. Two competing hypotheses are commonly used to explain their modern topographic expression. One suggests that relief is largely controlled by variable lithologic resistance to weathering and that their modern form has long persisted in a dynamic equilibrium. The second postulates that their relief is a product of recent rejuvenation, driven either by climate change or the epeirogenic uplift of the land surface driven by mantle forcing. Within portions of the Cullasaja River Basin of the southern Appalachians, we show that relief has increased by > 150% since the Miocene. Evident within the basin are a set of retreating knickpoints that delineate a rugged actively incising landscape from lower-relief relict topography. Constraints on the timing of knickpoint entry into the basin suggest that the process of landscape rejuvenation began well prior to the late Cenozoic (

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>