Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Evidence of Geological ‘Facelift’ in the Appalachians

01.02.2013
How does a mountain range maintain its youthful, rugged appearance after 200 million years without tectonic activity? Try a geological facelift – courtesy of the earth’s mantle.

Researchers from North Carolina State University noticed that a portion of the Appalachian Mountains in western North Carolina near the Cullasaja River basin was topographically quite different from its surroundings.

They found two distinct landscapes in the basin: an upper portion with gentle, rounded hills, where the average distance from valley to mountain top was about 500 feet; and a lower portion where the valley bottom to ridgeline elevation difference was 2,500 feet, hills were steep, and there was an abundance of waterfalls. The researchers believed they could use this unique topography to decipher the more recent geologic history of the region.

The Appalachian mountain range was formed between 325 to 260 million years ago by tectonic activity – when tectonic plates underneath the earth’s surface collided and pushed the mountains up. Around 230 million years ago, the Atlantic Ocean basin began to open, and this also affected the regional topography. But geologists knew that there hadn’t been any significant tectonic activity in the region since then.

“Conventional wisdom holds that in the absence of tectonic activity, mountainous terrain gets eroded and beveled down, so the terrain isn’t as dramatic,” says Sean Gallen, NC State graduate student in marine, earth and atmospheric sciences. “When we noticed that this area looked more like younger mountain ranges instead of the older, rounded, rolling topography around it, we wanted to figure out what was going on.”

Gallen and Karl Wegmann, an assistant professor of marine, earth and atmospheric sciences at NC State, decided to look at the waterfalls in the area, because they would have formed as the topography changed. By measuring the rate of erosion for the falls they could extrapolate their age, and therefore calculate how long ago this particular region was “rejuvenated” or lifted up. They found that these particular waterfalls were about 8 million years old, which indicated that the landscape must have been raised up around the same time.

But without tectonic activity, how did the uplift occur? Gallen and Wegmann point to the earth’s mantle as the most likely culprit. “The earth’s outer shell is the crust, but the next layer down – the mantle – is essentially a very viscous fluid,” Wegmann says. “When it’s warm it can well up, pushing the crust up like a big blister. If a heavy portion of the crust underneath the Appalachians ‘broke off,’ so to speak, this area floated upward on top of the blister. In this case, our best hypothesis is that mantle dynamics rejuvenated the landscape.”

The researchers’ findings appear in Geological Society of America Today. Del Bohnenstiehl, NC State associate professor of marine, earth and atmospheric sciences, contributed to the work.

Note to editors: Abstract follows.

“Miocene rejuvenation of topographic relief in the southern Appalachians”

Authors: Sean F. Gallen, Karl W. Wegmann, and DelWayne R. Bohnenstiehl, North Carolina State University

Published: Geological Society of America Today

Abstract:
Conventional wisdom holds that the southern Appalachian Mountains have not experienced a significant phase of tectonic forcing for > 200 m.y.; yet, they share many characteristics with tectonically active settings, including locally high topographic relief, steep slopes, incised river gorges and frequent mass-wasting events. Two competing hypotheses are commonly used to explain their modern topographic expression. One suggests that relief is largely controlled by variable lithologic resistance to weathering and that their modern form has long persisted in a dynamic equilibrium. The second postulates that their relief is a product of recent rejuvenation, driven either by climate change or the epeirogenic uplift of the land surface driven by mantle forcing. Within portions of the Cullasaja River Basin of the southern Appalachians, we show that relief has increased by > 150% since the Miocene. Evident within the basin are a set of retreating knickpoints that delineate a rugged actively incising landscape from lower-relief relict topography. Constraints on the timing of knickpoint entry into the basin suggest that the process of landscape rejuvenation began well prior to the late Cenozoic (

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Earth Sciences:

nachricht For a rare prairie orchid, science is making climate change local
12.02.2016 | USDA Forest Service - Northern Research Station

nachricht NASA sees Tropical Cyclone Winston form
12.02.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>