Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explain odd oxygen bonding under pressure

06.08.2008
Oxygen, the third most abundant element in the cosmos and essential to life on Earth, changes its forms dramatically under pressure transforming to a solid with spectacular colors. Eventually it becomes metallic and a superconductor.

The underlying mechanism for these remarkable phenomena has been fascinating to scientists for decades; especially the origin of the recently discovered molecular cluster (O2)4 in the dense solid, red oxygen phase.

Researchers from the Carnegie Institution's Geophysical Laboratory (GL), with colleagues* found that under pressure the molecules interact through their outermost electron clouds or "orbitals." Using a newly developed synchrotron technique at HPCAT, the lab's synchrotron facility at Argonne National Laboratory, the researchers found that the interaction of these half-filled orbitals increases with increasing pressure, changing the location of the orbitals, and bringing the four oxygen molecules together to form the (O2)4 clusters at a pressure about 10,000 times the atmospheric pressure (10 gigapascals). The study is published the week of August 4, in the Proceedings of the National Academy of Sciences.

"The molecular interaction in oxygen revealed by this study is due to the unique fact that oxygen's outmost orbital is half-filled with two unpaired electrons," explained Yue Meng, lead author of the study at HPCAT. "As the molecules are squeezed into smaller volumes at high pressure, electrons in the orbital inevitably move about, trying to pair with electrons in the neighboring molecules."

To study the dense solid phases of oxygen, the researchers developed the high-pressure inelastic X-ray scattering technique at the Advanced Photon Source, a high-brilliance synchrotron X-ray facility at Argonne. The technique uses the synchrotron X-ray beam to probe the electronic bonding change as a diamond anvil cell subjects a sample to many hundreds of thousands of atmospheres. The researchers combined their experimental results with theoretical calculations by collaborators to further reveal that there is an increasing interactions between the neighboring (O2)4 clusters in the red-colored oxygen, providing a mechanism for forming new bonding between the oxygen clusters in still higher pressure phases.

"The behavior of oxygen at high pressure demonstrates one of the most profound effects of pressure on matter, which transforms the colorless air we breath into colorful dense solids," continued Meng. "The drastic change in the appearance of this familiar gas is due to the bonding changes in oxygen induced by high pressure."

"This is the first demonstration of how new tools can be used to probe the subtle interactions between atoms and molecules that lead to the formation of entirely new crystal structures," said Russell J. Hemley, the GL's director. "These new structures may give rise to entirely new electronic, magnetic, and other physical properties that could lead to new technologies."

The formation of molecular clusters through the anti-bonding orbital called ?* is well known in organic chemistry and the electron delocalization in cluster orbitals provides several potentials for technical applications. "It is exciting to find that oxygen forms molecular clusters under high pressure through similar mechanism and this opens a possibility for new forms of materials at high pressure with potential for technical applications," Meng concluded.

Yue Meng | EurekAlert!
Further information:
http://www.hpcat.aps.anl.gov
http://www.CIW.edu

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>