Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers document acceleration of ocean denitrification during deglaciation

03.06.2013
As ice sheets melted during the deglaciation of the last ice age and global oceans warmed, oceanic oxygen levels decreased and "denitrification" accelerated by 30 to 120 percent, a new international study shows, creating oxygen-poor marine regions and throwing the oceanic nitrogen cycle off balance.

By the end of the deglaciation, however, the oceans had adjusted to their new warmer state and the nitrogen cycle had stabilized – though it took several millennia. Recent increases in global warming, thought to be caused by human activities, are raising concerns that denitrification may adversely affect marine environments over the next few hundred years, with potentially significant effects on ocean food webs.

Results of the study have been published this week in the journal Nature Geoscience. It was supported by the National Science Foundation.

"The warming that occurred during deglaciation some 20,000 to 10,000 years ago led to a reduction of oxygen gas dissolved in sea water and more denitrification, or removal of nitrogen nutrients from the ocean," explained Andreas Schmittner, an Oregon State University oceanographer and author on the Nature Geoscience paper. "Since nitrogen nutrients are needed by algae to grow, this affects phytoplankton growth and productivity, and may also affect atmospheric carbon dioxide concentrations."

"This study shows just what happened in the past, and suggests that decreases in oceanic oxygen that will likely take place under future global warming scenarios could mean more denitrification and fewer nutrients available for phytoplankton," Schmittner added.

In their study, the scientists analyzed more than 2,300 seafloor core samples, and created 76 time series of nitrogen isotopes in those sediments spanning the past 30,000 years. They discovered that during the last glacial maximum, the Earth's nitrogen cycle was at a near steady state. In other words, the amount of nitrogen nutrients added to the oceans – known as nitrogen fixation – was sufficient to compensate for the amount lost by denitrification.

A lack of nitrogen can essentially starve a marine ecosystem by not providing enough nutrients. Conversely, too much nitrogen can create an excess of plant growth that eventually decays and uses up the oxygen dissolved in sea water, suffocating fish and other marine organisms.

Following the period of enhanced denitrification and nitrogen loss during deglaciation, the world's oceans slowly moved back toward a state of near stabilization. But there are signs that recent rates of global warming may be pushing the nitrogen cycle out of balance.

"Measurements show that oxygen is already decreasing in the ocean," Schmittner said "The changes we saw during deglaciation of the last ice age happened over thousands of years. But current warming trends are happening at a much faster rate than in the past, which almost certainly will cause oceanic changes to occur more rapidly.

"It still may take decades, even centuries to unfold," he added.

Schmittner and Christopher Somes, a former graduate student in the OSU College of Earth, Ocean, and Atmospheric Sciences, developed a model of nitrogen isotope cycling in the ocean, and compared that with the nitrogen measurements from the seafloor sediments. Their sensitivity experiments with the model helped to interpret the complex patterns seen in the observations.

Andreas Schmittner | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>