Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover oldest evidence of nails in modern primates

16.08.2011
From hot pink to traditional French and Lady Gaga’s sophisticated designs, manicured nails have become the grammar of fashion.

But they are not just pretty — when nails appeared on all fingers and toes in modern primates about 55 million years ago, they led to the development of critical functions, including finger pads that allow for sensitive touch and the ability to grasp, whether it’s a nail polish brush or remover to prepare for the next trend.

In a new study co-authored by University of Florida scientists, researchers recovered and analyzed the oldest fossil evidence of fingernails in modern primates, confirming the idea nails developed with small body size and disproving previous theories nails evolved with an increase in primate body size. More than 25 new specimens of Teilhardina brandti – an extinct primate originally described from a single lower molar — include pieces of upper teeth and ankle bones that show the mammal lived in trees. Its nails allowed the lemur-like animal to grasp onto branches and move through the trees with more agility, researchers said.

“If you take all the primates that are alive today, they’re all going to have characteristics that look the same, but unlike people, many of them live in trees,” said co-author Jonathan Bloch, an associate curator of vertebrate paleontology at the Florida Museum of Natural History on the UF campus. “By finding parts of the skeleton of this primitive primate, we are able to test whether nails were present in the common ancestor of the group that includes lemurs, monkeys, and humans — it’s direct evidence as opposed to speculation.”

Appearing in the current online edition of the American Journal of Physical Anthropology, the study provides a better understanding of the evolutionary relationships of one of the oldest known modern primates, as well as the time frame and environmental conditions that allowed for the development of nails on all fingers and toes, an exclusive feature among primates.

Specimens of T. brandti were collected over the last seven years in northwestern Wyoming’s Bighorn Basin and represent the earliest North American species from the group of euprimates, also known as “true” primates. The fossils date to the early Eocene epoch, about 55.8 million years ago, at the same time as a 200,000-year global warming event known as the Paleocene-Eocene Thermal Maximum occurred, Bloch said. Mammals evolved to be smaller during that time, when even- and odd-toed hoofed mammals, distantly related to modern deer and horses, also first appeared in the fossil record.

“The appearance of the first modern primates in North America co-occurred with the appearance of other modern mammals such as horses, and it’s all associated with a major global warming event,” said co-author Stephen Chester, a Yale University doctoral student and research associate at UF. “It in part set the stage for what we see today in terms of modern mammalian biodiversity.”

Less than 6 inches long, T. brandti was omnivorous, Bloch said. While archaic primates mostly had claws, some of the characteristics of modern primates include forward-facing eyes, an enlarged brain and nails on all digits.

“They are the smallest true nails known on record, whether living or fossil,” said first author Ken Rose, a professor in the Center for Functional Anatomy & Evolution at Johns Hopkins University School of Medicine. “That certainly doesn’t suggest nails developed with larger bodies.”

Based on the age of the fossils and analyses of Teilhardina species from other parts of the world, researchers were also able to analyze the hypothesis that mammals migrated from Asia into North America. Instead, they likely passed from Asia, through Europe and into North America on high-latitude land connections.

“This research really suggests that we are looking at something extremely close [to the species found in Europe] and that’s of great interest in itself,” Rose said. “We can show these species were extremely close morphologically in time and found in Europe and Wyoming.”

During the Paleocene-Eocene Thermal Maximum, average temperatures were about 15 degrees Fahrenheit higher than today, and the large variety of mammals found in the fossil record from that time remains a mystery to scientists.

“The finding of this animal and the concentrated effort of this period of time might be one of those things where the closer you look, the less you know,” said Gregg Gunnell, director of the Division of Fossil Primates at the Duke Lemur Center. “But any time we have the opportunity to add more morphological information to analyze the relationships of animals to answer these biogeographic questions, we can hopefully get closer and closer to an understanding of what led to this big radiation (diversification) of primates in the first place.”

Study co-authors also include Rachel Dunn of Johns Hopkins University and Doug Boyer of Brooklyn College, City University of New York. The research was supported by the National Science Foundation and Yale University.

Credits

Writer
Danielle Torrent, dtorrent@flmnh.ufl.edu
Source
Jon Bloch, jbloch@flmnh.ufl.edu, 352-273-1938

Jon Bloch | EurekAlert!
Further information:
http://www.ufl.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>