Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover oldest evidence of nails in modern primates

16.08.2011
From hot pink to traditional French and Lady Gaga’s sophisticated designs, manicured nails have become the grammar of fashion.

But they are not just pretty — when nails appeared on all fingers and toes in modern primates about 55 million years ago, they led to the development of critical functions, including finger pads that allow for sensitive touch and the ability to grasp, whether it’s a nail polish brush or remover to prepare for the next trend.

In a new study co-authored by University of Florida scientists, researchers recovered and analyzed the oldest fossil evidence of fingernails in modern primates, confirming the idea nails developed with small body size and disproving previous theories nails evolved with an increase in primate body size. More than 25 new specimens of Teilhardina brandti – an extinct primate originally described from a single lower molar — include pieces of upper teeth and ankle bones that show the mammal lived in trees. Its nails allowed the lemur-like animal to grasp onto branches and move through the trees with more agility, researchers said.

“If you take all the primates that are alive today, they’re all going to have characteristics that look the same, but unlike people, many of them live in trees,” said co-author Jonathan Bloch, an associate curator of vertebrate paleontology at the Florida Museum of Natural History on the UF campus. “By finding parts of the skeleton of this primitive primate, we are able to test whether nails were present in the common ancestor of the group that includes lemurs, monkeys, and humans — it’s direct evidence as opposed to speculation.”

Appearing in the current online edition of the American Journal of Physical Anthropology, the study provides a better understanding of the evolutionary relationships of one of the oldest known modern primates, as well as the time frame and environmental conditions that allowed for the development of nails on all fingers and toes, an exclusive feature among primates.

Specimens of T. brandti were collected over the last seven years in northwestern Wyoming’s Bighorn Basin and represent the earliest North American species from the group of euprimates, also known as “true” primates. The fossils date to the early Eocene epoch, about 55.8 million years ago, at the same time as a 200,000-year global warming event known as the Paleocene-Eocene Thermal Maximum occurred, Bloch said. Mammals evolved to be smaller during that time, when even- and odd-toed hoofed mammals, distantly related to modern deer and horses, also first appeared in the fossil record.

“The appearance of the first modern primates in North America co-occurred with the appearance of other modern mammals such as horses, and it’s all associated with a major global warming event,” said co-author Stephen Chester, a Yale University doctoral student and research associate at UF. “It in part set the stage for what we see today in terms of modern mammalian biodiversity.”

Less than 6 inches long, T. brandti was omnivorous, Bloch said. While archaic primates mostly had claws, some of the characteristics of modern primates include forward-facing eyes, an enlarged brain and nails on all digits.

“They are the smallest true nails known on record, whether living or fossil,” said first author Ken Rose, a professor in the Center for Functional Anatomy & Evolution at Johns Hopkins University School of Medicine. “That certainly doesn’t suggest nails developed with larger bodies.”

Based on the age of the fossils and analyses of Teilhardina species from other parts of the world, researchers were also able to analyze the hypothesis that mammals migrated from Asia into North America. Instead, they likely passed from Asia, through Europe and into North America on high-latitude land connections.

“This research really suggests that we are looking at something extremely close [to the species found in Europe] and that’s of great interest in itself,” Rose said. “We can show these species were extremely close morphologically in time and found in Europe and Wyoming.”

During the Paleocene-Eocene Thermal Maximum, average temperatures were about 15 degrees Fahrenheit higher than today, and the large variety of mammals found in the fossil record from that time remains a mystery to scientists.

“The finding of this animal and the concentrated effort of this period of time might be one of those things where the closer you look, the less you know,” said Gregg Gunnell, director of the Division of Fossil Primates at the Duke Lemur Center. “But any time we have the opportunity to add more morphological information to analyze the relationships of animals to answer these biogeographic questions, we can hopefully get closer and closer to an understanding of what led to this big radiation (diversification) of primates in the first place.”

Study co-authors also include Rachel Dunn of Johns Hopkins University and Doug Boyer of Brooklyn College, City University of New York. The research was supported by the National Science Foundation and Yale University.

Credits

Writer
Danielle Torrent, dtorrent@flmnh.ufl.edu
Source
Jon Bloch, jbloch@flmnh.ufl.edu, 352-273-1938

Jon Bloch | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>