Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover ‘Great-Grandmother’ of Crocodiles

14.01.2011
In the tropical rainforests of West Texas, which looked more like Costa Rica some 225 million years before cattle ranches and cotton fields would dot the landscape, it hunted by chasing and wrapping its tooth-filled jaws around its prey.

Modern man probably wouldn’t recognize its body, which was built more for land speed than aquatic surprise, said Sankar Chatterjee, curator of paleontology at the Museum of Texas Tech. That is, until we saw the eyes and unmistakable head of possibly the oldest crocodile ancestor found to date.

The fossil was discovered on a ranch and prepared by Doug Cunningham, fossil preparator at the Museum of Texas Tech University. Chatterjee said he has yet to name the animal, and it probably won’t debut in scientific literature for another two years.

Thanks to a new CT scanner at Texas Tech’s Department of Petroleum Engineering, he was able to look inside the skull of this animal to study the brain case and sinus cavities.

“This is a brand new animal and possibly the great-grandmother of all crocodiles,” he said. “It was still walking. These early crocodiles look like your typical terrestrial animals. An intact skull is very rare to find. One of the exciting things is we were able to see inside its brain case with the CT scan. We can see the brain evolved very slowly.”

Shameem Siddiqui, the Kerr-McGee Professor of Petroleum Engineering, collaborated with Chatterjee on the project. He said his CT scanner usually is used to study fluid flow through different types of rocks. However, it also can serve as a tool for imaging fossilized bones, and Siddiqui paired with Chatterjee this fall to learn more about the crocodile.

“When we scanned one of the samples with bones encrusted in the rock, we were able to find some hidden pieces of the crocodile,” Siddiqui said. “That was exciting. When we did the 3-D imaging of the skull, it was equally as exciting. Already, Sankar and I have been talking about using the CT scanner to measure bone density of more recent crocodiles and compare the data with bone densities of this ancient crocodile.”

The newly discovered crocodile ancestor came on the scene about the same time as dinosaurs began evolving, Chatterjee said. The animal’s hind limbs, hip girdle and tail clearly suggest this was a land animal. Bones show the animal was adapted to walking or running. In modern aquatic crocodiles, the legs are small, and the tail creates the forward thrust by undulation it needs to move quickly in the water.

The strong similarity lies in the ankle joint and braincase, he said.

“It has lots of sinuses in the braincase like those of modern crocs,” Chatterjee said. “These sinuses may be linked to their vocalization. Unlike most reptiles, crocs are very vocal and hear well. We described a similar animal from China that gives us some idea about the way this animal lived.

“Leaving land for the water was probably the smartest thing crocodiles and alligators did. That way, they didn’t encounter the dinosaurs like other animals did.”

Watch the interviews here: http://www.youtube.com/watch?v=hxnYZoFPb8o.

CONTACT: Sankar Chatterjee, curator of paleontology at the Museum of Texas Tech, (806) 787-4332, or sankar.chatterjee@ttu.edu; Shameem Siddiqui, Kerr-McGee Professor of Petroleum Engineering, Department of Petroleum Engineering, Texas Tech University, (806) 742-3573 or shameem.siddiqui@ttu.edu.

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>