Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover ‘Great-Grandmother’ of Crocodiles

14.01.2011
In the tropical rainforests of West Texas, which looked more like Costa Rica some 225 million years before cattle ranches and cotton fields would dot the landscape, it hunted by chasing and wrapping its tooth-filled jaws around its prey.

Modern man probably wouldn’t recognize its body, which was built more for land speed than aquatic surprise, said Sankar Chatterjee, curator of paleontology at the Museum of Texas Tech. That is, until we saw the eyes and unmistakable head of possibly the oldest crocodile ancestor found to date.

The fossil was discovered on a ranch and prepared by Doug Cunningham, fossil preparator at the Museum of Texas Tech University. Chatterjee said he has yet to name the animal, and it probably won’t debut in scientific literature for another two years.

Thanks to a new CT scanner at Texas Tech’s Department of Petroleum Engineering, he was able to look inside the skull of this animal to study the brain case and sinus cavities.

“This is a brand new animal and possibly the great-grandmother of all crocodiles,” he said. “It was still walking. These early crocodiles look like your typical terrestrial animals. An intact skull is very rare to find. One of the exciting things is we were able to see inside its brain case with the CT scan. We can see the brain evolved very slowly.”

Shameem Siddiqui, the Kerr-McGee Professor of Petroleum Engineering, collaborated with Chatterjee on the project. He said his CT scanner usually is used to study fluid flow through different types of rocks. However, it also can serve as a tool for imaging fossilized bones, and Siddiqui paired with Chatterjee this fall to learn more about the crocodile.

“When we scanned one of the samples with bones encrusted in the rock, we were able to find some hidden pieces of the crocodile,” Siddiqui said. “That was exciting. When we did the 3-D imaging of the skull, it was equally as exciting. Already, Sankar and I have been talking about using the CT scanner to measure bone density of more recent crocodiles and compare the data with bone densities of this ancient crocodile.”

The newly discovered crocodile ancestor came on the scene about the same time as dinosaurs began evolving, Chatterjee said. The animal’s hind limbs, hip girdle and tail clearly suggest this was a land animal. Bones show the animal was adapted to walking or running. In modern aquatic crocodiles, the legs are small, and the tail creates the forward thrust by undulation it needs to move quickly in the water.

The strong similarity lies in the ankle joint and braincase, he said.

“It has lots of sinuses in the braincase like those of modern crocs,” Chatterjee said. “These sinuses may be linked to their vocalization. Unlike most reptiles, crocs are very vocal and hear well. We described a similar animal from China that gives us some idea about the way this animal lived.

“Leaving land for the water was probably the smartest thing crocodiles and alligators did. That way, they didn’t encounter the dinosaurs like other animals did.”

Watch the interviews here: http://www.youtube.com/watch?v=hxnYZoFPb8o.

CONTACT: Sankar Chatterjee, curator of paleontology at the Museum of Texas Tech, (806) 787-4332, or sankar.chatterjee@ttu.edu; Shameem Siddiqui, Kerr-McGee Professor of Petroleum Engineering, Department of Petroleum Engineering, Texas Tech University, (806) 742-3573 or shameem.siddiqui@ttu.edu.

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>