Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover fate of melting glacial ice in Greenland

26.04.2016

Over the past several decades, scientists have observed a significant increase in the melting of glacial land ice on the island of Greenland, spurring concerns about global sea level rise and the long-term effects of atmospheric warming. What has been less clear, however, is what happens to this meltwater once it enters the ocean.

Now, a team of researchers led by faculty at the University of Georgia has discovered the fate of much of the freshwater that pours into the surrounding oceans as the Greenland ice sheet melts every summer. They published their findings today in the journal Nature Geoscience.


A team from Rutgers University and the University of Georgia, led by Asa Rennermalm of Rutgers, measures meltwater runoff from the ice sheet margin in Greenland during summer 2013.

Credit: Asa Rennermalm/Rutgers University

"Understanding the fate of meltwater is important, because research has shown that it can carry a variety of nutrients, which may impact biological production in the ocean," said study co-author Renato Castelao, an associate professor of marine sciences in UGA's Franklin College of Arts and Sciences. "There is also evidence that large freshwater inputs could alter ocean currents and affect the normal formation of sea ice."

The researchers created a simulation that tracks meltwater runoff under a variety of atmospheric conditions, and they were surprised to discover that most of the meltwater found off the west coast of Greenland actually originated from ice on the east coast.

"Meltwater from Greenland is directed by the surrounding ocean currents, but its fate depends on when and where the runoff occurs and the wind fields driving ocean currents," said study co-author Thomas Mote, Distinguished Research Professor of Geography at UGA.

According to the model, wind and ocean currents often transport meltwater around the southern tip of Greenland on a westward journey that can take upward of 60 days. After rounding the tip, the meltwater is largely deposited into the Labrador Sea, an arm of the Atlantic between Canada's Labrador Peninsula and the east coast of Greenland.

Meltwater originating from the west coast of Greenland, on the other hand, is often kept pinned to the coastline by strong winds, which push it northward toward Baffin Bay.

This isn't always how meltwater from the Greenland ice sheet disperses, as shifts in the prevailing winds can produce very different effects. But scientists must be aware of these shifts in order to fully understand how meltwater will affect the environment, Castelao said.

"The meltwater that comes from the east coast could have different qualities from the meltwater on the west coast, including different nutrient compositions," he said. "We need to take the origins of this meltwater into account when we study the effects of ice sheet melt, as it could impact the oceans differently depending on where it comes from."

And this is a problem that is only going to get worse, said Castelao, citing scientific models that suggest the amount of meltwater runoff from Greenland could more than double before the end of this century.

"We need to pay careful attention to where melt and runoff is occurring and how it interacts with surrounding ocean currents, in addition to measuring the total amount of melt," said Mote.

###

Other researchers working on this project include Hao Luo and Patricia Yager from UGA's department of marine sciences; Asa Rennermalm, Rutgers University; Marco Tedesco, Columbia University; and Annalisa Bracco, Georgia Institute of Technology.

Their study, "Oceanic transport of surface meltwater from the southern Greenland ice sheet," is available at http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2708.html.

Media Contact

Stephanie Schupska
schupska@uga.edu
706-542-6927

 @universityofga

http://www.uga.edu 

Stephanie Schupska | EurekAlert!

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>