Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Antimatter in Thunderstorms

18.01.2011
Dr. Michael Briggs, a member of NASA’s Fermi Gamma-ray Burst Monitor (GBM) team at The University of Alabama in Huntsville today announced that the GBM telescope has detected beams of antimatter produced above thunderstorms on Earth by energetic processes similar to those found in particle accelerators.

"These signals are the first direct evidence that thunderstorms make antimatter particle beams," said Michael Briggs, a university researcher whose team, located at UAHuntsville, includes scientists from NASA Marshall Space Flight Center, the University of Alabama in Huntsville, Max-Planck Institute in Garching, Germany, and from around the world. He presented the findings during a news briefing at the American Astronomical Society meeting in Seattle.

Scientists think the antimatter particles are formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms that has a relationship to lighting that is not fully understood. As many as 500 TGFs may occur daily worldwide, but most go undetected.

The spacecraft, known as Fermi, is designed to observe gamma-ray sources in space, emitters of the highest energy form of light. Fermi’s GBM constantly monitors the entire celestial sky, with sensors observing in all directions, including some toward the Earth, thereby providing valuable insight into this strange phenomenon.

When the antimatter produced in a terrestrial thunderstorm collides with normal matter, such as the spacecraft itself, both the matter and antimatter particles immediately are annihilated and transformed into gamma-rays observed by the GBM sensors. The detection of gamma-rays with energies of a particular energy -- 511,000 electron volts -- is the smoking-gun, indicating that the source of the observed gamma-rays in these events is the annihilation of an electron with its antimatter counterpart, a positron, produced in the TGF.

Since the spacecraft’s launch in 2008, the GBM team has identified 130 TGFs, which are usually accompanied by thunderstorms located directly below the spacecraft at the time of detection. However, in four cases, storms were a far distance from Fermi. Lightning-generated radio signals, detected by a global monitoring network, indicated the only lightning at the time of these events was hundreds or more miles away.

During one TGF, which occurred on December 14, 2009, Fermi was located over Egypt. However, the active storm was in Zambia, some 2,800 miles to the south. The distant storm was below Fermi’s horizon, so any gamma-rays it produced could not have been detected directly. Although Fermi could not see the storm from its position in orbit, it was still connected to it through sharing of a common magnetic field line of the Earth, which could be followed by the high-speed electrons and positrons produced by the TGF. These particles travelled up along the Earth’s magnetic field lines and struck the spacecraft. The beam continued past Fermi along the magnetic field, to a location known as a mirror point, where its motion was reversed, and then 23 milliseconds later, hit the spacecraft again. Each time, positrons in the beam collided with electrons in the spacecraft, annihilating each other, and emitting gamma-rays detected by Fermi’s GBM.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. The spacecraft is managed by NASA's Goddard Space Flight Center in Greenbelt, Md. The GBM instrument is a collaboration between scientists at NASA's Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max-Planck Institute in Garching, Germany. The Fermi mission was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

Ray Garner | Newswise Science News
Further information:
http://www.uah.edu

Further reports about: Antimatter Earth's magnetic field GBM Gamma-ray NASA Space TGF Thunderstorms magnetic field radio signal

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>