Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Antimatter in Thunderstorms

18.01.2011
Dr. Michael Briggs, a member of NASA’s Fermi Gamma-ray Burst Monitor (GBM) team at The University of Alabama in Huntsville today announced that the GBM telescope has detected beams of antimatter produced above thunderstorms on Earth by energetic processes similar to those found in particle accelerators.

"These signals are the first direct evidence that thunderstorms make antimatter particle beams," said Michael Briggs, a university researcher whose team, located at UAHuntsville, includes scientists from NASA Marshall Space Flight Center, the University of Alabama in Huntsville, Max-Planck Institute in Garching, Germany, and from around the world. He presented the findings during a news briefing at the American Astronomical Society meeting in Seattle.

Scientists think the antimatter particles are formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms that has a relationship to lighting that is not fully understood. As many as 500 TGFs may occur daily worldwide, but most go undetected.

The spacecraft, known as Fermi, is designed to observe gamma-ray sources in space, emitters of the highest energy form of light. Fermi’s GBM constantly monitors the entire celestial sky, with sensors observing in all directions, including some toward the Earth, thereby providing valuable insight into this strange phenomenon.

When the antimatter produced in a terrestrial thunderstorm collides with normal matter, such as the spacecraft itself, both the matter and antimatter particles immediately are annihilated and transformed into gamma-rays observed by the GBM sensors. The detection of gamma-rays with energies of a particular energy -- 511,000 electron volts -- is the smoking-gun, indicating that the source of the observed gamma-rays in these events is the annihilation of an electron with its antimatter counterpart, a positron, produced in the TGF.

Since the spacecraft’s launch in 2008, the GBM team has identified 130 TGFs, which are usually accompanied by thunderstorms located directly below the spacecraft at the time of detection. However, in four cases, storms were a far distance from Fermi. Lightning-generated radio signals, detected by a global monitoring network, indicated the only lightning at the time of these events was hundreds or more miles away.

During one TGF, which occurred on December 14, 2009, Fermi was located over Egypt. However, the active storm was in Zambia, some 2,800 miles to the south. The distant storm was below Fermi’s horizon, so any gamma-rays it produced could not have been detected directly. Although Fermi could not see the storm from its position in orbit, it was still connected to it through sharing of a common magnetic field line of the Earth, which could be followed by the high-speed electrons and positrons produced by the TGF. These particles travelled up along the Earth’s magnetic field lines and struck the spacecraft. The beam continued past Fermi along the magnetic field, to a location known as a mirror point, where its motion was reversed, and then 23 milliseconds later, hit the spacecraft again. Each time, positrons in the beam collided with electrons in the spacecraft, annihilating each other, and emitting gamma-rays detected by Fermi’s GBM.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. The spacecraft is managed by NASA's Goddard Space Flight Center in Greenbelt, Md. The GBM instrument is a collaboration between scientists at NASA's Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max-Planck Institute in Garching, Germany. The Fermi mission was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

Ray Garner | Newswise Science News
Further information:
http://www.uah.edu

Further reports about: Antimatter Earth's magnetic field GBM Gamma-ray NASA Space TGF Thunderstorms magnetic field radio signal

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>