Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Dig Deep Into Wyoming Basin for Global Warming Clues

13.07.2011
About 55 million years ago, the Earth burped up a massive release of carbon dioxide into the atmosphere – an amount equivalent to burning all the petroleum and other fossil fuels that exist today.

“And we don’t know where it came from,” says University of New Hampshire’s Will Clyde, associate professor of geology. “This is a big part of the carbon cycle that affected the climate system, and we don’t understand it.”

This month, Clyde is leading a pioneering National Science Foundation-funded geological study in the Bighorn Basin of Wyoming to search for clues to this event, which occurred during a period of extreme warming called the Paleocene-Eocene Thermal Maximum (PETM). A team of 27 scientists from 11 institutions will drill a series of cores into the basin’s stratified layers of rocks that they hope will yield better understanding of this mystery and – perhaps – of current and future global climate change.

This field work, in an area just east of Yellowstone National Park near Cody, Wyo., will be the first time scientists have drilled continental cores in an attempt to better understand this release of carbon and the warming, an environmental anomaly called a hyperthermal event, that surrounded it. Previous research has utilized ocean cores or more weathered rock outcroppings.

The sedimentary deposits in the semi-arid, 100-mile-wide Bighorn Basin created ideal conditions for studying the PETM. Drilling two-and-a-half-inch diameter cores about 150 meters into the sediment, says Clyde, will advance research by providing pristine sediments on which scientists can do more precise geocehmical analyses.

“It will help us better understand the long-term carbon cycle of the Earth,” says Clyde, who chairs the Earth sciences department in UNH’s College of Engineering and Physical Sciences (CEPS).

It’s not just ancient history Clyde and his colleagues are interested in. Researchers suspect that the carbon release may have been a result of an initial rise in temperature during the PETM and they wonder whether current warming, due to global climate change, could launch a similar event. Further, the PETM provides insights into the carbon cycle, climate system, and how living organisms respond to environmental change.

“Could our dependence on carbon-based energy sources trigger one or more causes of prehistoric global warming and, as a result, make our struggle with a warming earth far worse than currently predicted? ” asks Clyde.

Between July 13 and Aug. 11, 2011, the scientists will drill pairs of cores at three sites – Polecat Bench, Gilmore Hill, and Basin Substation – around the Bighorn Basin. In partnership with a professional drilling team, scientists will work around the clock for a week at each site; each core, says Clyde, could take three days to drill.

“The nature of these rocks makes them particularly hard to core,” he says, adding that because this type of scientific drilling has never been conducted on these kinds of deposits, the team will be pioneering some of this work.

Once collected, the cores will be shipped in refrigerated containers to the University of Bremen in Germany. Clyde and the team will visit that laboratory in January 2012 to continue studying the cores, measuring the isotopic signature of carbon residue in the rocks to determine the amount of carbon released into the atmosphere during hyperthermals.

Clyde is optimistic about the project’s ability to shed light on previous and potential global warming. “Hopefully, by looking at the past, we will better understand prospects for the long-term climate cycle that may or may not become our future.”

The research team is posting news and photos from the field on a Facebook page, . For more information on the project, go to http://earth.unh.edu/clyde/BBCP.shtml.

This research was funded by a $1.4 million grant from the National Science Foundation. In addition to Clyde, master’s students Abby D'Ambrosia and Jeremy Riedel and project manager Doug Schnurrenberger from UNH, and scientists from the following instutitions will participate: Universities of Michigan, Colorado, Wyoming, Birmingham (U.K.), and Bremen (Germany); Columbia, Northwestern, Pennsylvania State, Purdue, and Utrecht (Netherlands) universities; the Smithsonian Institution; Bureau of Land Management; Denver Museum of Nature and Science; ExxonMobil; LacCore; NIOZ (Royal Netherlands Institute for Sea Research); and South Dakota School of Mines & Technology.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

| Newswise Science News
Further information:
http://www.unh.edu/news

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>