Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Dig Deep Into Wyoming Basin for Global Warming Clues

About 55 million years ago, the Earth burped up a massive release of carbon dioxide into the atmosphere – an amount equivalent to burning all the petroleum and other fossil fuels that exist today.

“And we don’t know where it came from,” says University of New Hampshire’s Will Clyde, associate professor of geology. “This is a big part of the carbon cycle that affected the climate system, and we don’t understand it.”

This month, Clyde is leading a pioneering National Science Foundation-funded geological study in the Bighorn Basin of Wyoming to search for clues to this event, which occurred during a period of extreme warming called the Paleocene-Eocene Thermal Maximum (PETM). A team of 27 scientists from 11 institutions will drill a series of cores into the basin’s stratified layers of rocks that they hope will yield better understanding of this mystery and – perhaps – of current and future global climate change.

This field work, in an area just east of Yellowstone National Park near Cody, Wyo., will be the first time scientists have drilled continental cores in an attempt to better understand this release of carbon and the warming, an environmental anomaly called a hyperthermal event, that surrounded it. Previous research has utilized ocean cores or more weathered rock outcroppings.

The sedimentary deposits in the semi-arid, 100-mile-wide Bighorn Basin created ideal conditions for studying the PETM. Drilling two-and-a-half-inch diameter cores about 150 meters into the sediment, says Clyde, will advance research by providing pristine sediments on which scientists can do more precise geocehmical analyses.

“It will help us better understand the long-term carbon cycle of the Earth,” says Clyde, who chairs the Earth sciences department in UNH’s College of Engineering and Physical Sciences (CEPS).

It’s not just ancient history Clyde and his colleagues are interested in. Researchers suspect that the carbon release may have been a result of an initial rise in temperature during the PETM and they wonder whether current warming, due to global climate change, could launch a similar event. Further, the PETM provides insights into the carbon cycle, climate system, and how living organisms respond to environmental change.

“Could our dependence on carbon-based energy sources trigger one or more causes of prehistoric global warming and, as a result, make our struggle with a warming earth far worse than currently predicted? ” asks Clyde.

Between July 13 and Aug. 11, 2011, the scientists will drill pairs of cores at three sites – Polecat Bench, Gilmore Hill, and Basin Substation – around the Bighorn Basin. In partnership with a professional drilling team, scientists will work around the clock for a week at each site; each core, says Clyde, could take three days to drill.

“The nature of these rocks makes them particularly hard to core,” he says, adding that because this type of scientific drilling has never been conducted on these kinds of deposits, the team will be pioneering some of this work.

Once collected, the cores will be shipped in refrigerated containers to the University of Bremen in Germany. Clyde and the team will visit that laboratory in January 2012 to continue studying the cores, measuring the isotopic signature of carbon residue in the rocks to determine the amount of carbon released into the atmosphere during hyperthermals.

Clyde is optimistic about the project’s ability to shed light on previous and potential global warming. “Hopefully, by looking at the past, we will better understand prospects for the long-term climate cycle that may or may not become our future.”

The research team is posting news and photos from the field on a Facebook page, . For more information on the project, go to

This research was funded by a $1.4 million grant from the National Science Foundation. In addition to Clyde, master’s students Abby D'Ambrosia and Jeremy Riedel and project manager Doug Schnurrenberger from UNH, and scientists from the following instutitions will participate: Universities of Michigan, Colorado, Wyoming, Birmingham (U.K.), and Bremen (Germany); Columbia, Northwestern, Pennsylvania State, Purdue, and Utrecht (Netherlands) universities; the Smithsonian Institution; Bureau of Land Management; Denver Museum of Nature and Science; ExxonMobil; LacCore; NIOZ (Royal Netherlands Institute for Sea Research); and South Dakota School of Mines & Technology.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

| Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>