Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers chance viewing of river cutoff forming provides rare insight

22.09.2011
For University of Illinois river researchers, new insight into river cutoffs was a case of being in the right place at the right time.

Geography professor Bruce Rhoads and geology professor Jim Best were conducting research where the Wabash River meets the Ohio River in the summer of 2008 when they heard about a new channel that had just formed, cutting off a bend in the winding Wabash just upstream from the confluence. That serendipity gave the researchers a rare view of a dynamic, little-understood river process that changed the local landscape and deposited so much sediment into the river system that it closed the Ohio River.

“It was fortunate to be there right when it was beginning to happen, because these are hard-to-predict, unusual events, particularly on large rivers,” Rhoads said.

While cutoffs are common in meandering rivers, or rivers that wander across their floodplains, the conditions surrounding cutoff events are poorly understood. Most cutoffs are discovered long after they first develop. The Illinois team’s quick response to the 2008 Wabash cutoff, and witnessing of a second cutoff in the same bend a year later, allowed them to monitor the huge amounts of sediment the cutoffs released into the river. The researchers published their findings in the journal Nature Geoscience.

“Cutoffs occur in just about every meandering river on the face of the earth,” said Jessica Zinger, a graduate student and lead author of the paper. “Although it’s unusual to capture one like this, they are ubiquitous events, so it’s important to understand what happens when these cutoffs occur, why they occur when they do, and how they evolve after they occur.”

The two cutoffs, both 1 kilometer long, delivered about 6 million tons of sediment from the floodplain into the river – equivalent to 6.4 percent of the total annual sediment load of the entire Mississippi River basin (which the Wabash contributes to) – in a matter of days. It would take nearly 250 years of bank erosion to displace the same amount of sediment along the bend, had the cutoff not occurred. Such sediment pulses, as they are known, are more often associated with mountain rivers, rather than the relatively level landscape of rural Illinois.

“The first kilometer-long channel was cut in eight days, which is a phenomenal rate of erosion,” Best said. “There were banks collapsing, sediment moving; it’s probably one of the most dynamic river environments you’ll ever see, and you don’t expect that in lowland, flat-grade rivers.”

The researchers found that, after each cutoff, the majority of the sediment was deposited locally. In particular, a large percentage of the sediment accumulated where the Wabash joins the Ohio River. The new layer of sediment, up to 7 meters thick, raised the bed of the Ohio River and required dredging so that barges could continue to use the river.

The Wabash River study demonstrated that cutoffs can have large, immediate effects on sediment transport and deposition in a river – processes not accounted for in current models of meandering rivers.

“If we look at river systems and their role in the landscape, one of their most fundamental roles from a geoscience perspective is that they transport sediment from the land surfaces to ocean basins,” Rhoads said. “What has not been recognized is that these cutoff events can actually deliver large amounts of sediment to the river very rapidly. Then, the question is, since cutoffs are ubiquitous along a lot of meandering rivers, could this be something that we have not recognized fully as a major sediment delivery mechanism for all meandering rivers?”

The researchers plan to continue monitoring the cutoff and the areas just upstream and downstream to document how the cutoffs contribute to the river’s evolution. They anticipate that the river will abandon the bend and the first cutoff as more water is directed through the second cutoff, a more direct route for the river to flow. The abandoned bend will become a new wetland area, shaping the local ecology. The researchers will continue to measure and model changes in flow velocity, sediment transport and morphology in the river as the cutoff channel widens, providing valuable insight into cutoff effects and perhaps contributing to a model that could predict where such sediment pulses could occur.

“Our study brings attention to a whole range of elements – the basic science, the local effects, the ecological effects, the commercial effects – all from this one mechanism of channel change,” s said. “A lot of the meandering models that are out there treat cutoffs very schematically and they don’t deal with the processes that are occurring once a cutoff develops. I think that our work could really make people rethink that aspect of modeling the long-term evolution of meander bends.”

The National Science Foundation supported this work.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>