Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers chance viewing of river cutoff forming provides rare insight

22.09.2011
For University of Illinois river researchers, new insight into river cutoffs was a case of being in the right place at the right time.

Geography professor Bruce Rhoads and geology professor Jim Best were conducting research where the Wabash River meets the Ohio River in the summer of 2008 when they heard about a new channel that had just formed, cutting off a bend in the winding Wabash just upstream from the confluence. That serendipity gave the researchers a rare view of a dynamic, little-understood river process that changed the local landscape and deposited so much sediment into the river system that it closed the Ohio River.

“It was fortunate to be there right when it was beginning to happen, because these are hard-to-predict, unusual events, particularly on large rivers,” Rhoads said.

While cutoffs are common in meandering rivers, or rivers that wander across their floodplains, the conditions surrounding cutoff events are poorly understood. Most cutoffs are discovered long after they first develop. The Illinois team’s quick response to the 2008 Wabash cutoff, and witnessing of a second cutoff in the same bend a year later, allowed them to monitor the huge amounts of sediment the cutoffs released into the river. The researchers published their findings in the journal Nature Geoscience.

“Cutoffs occur in just about every meandering river on the face of the earth,” said Jessica Zinger, a graduate student and lead author of the paper. “Although it’s unusual to capture one like this, they are ubiquitous events, so it’s important to understand what happens when these cutoffs occur, why they occur when they do, and how they evolve after they occur.”

The two cutoffs, both 1 kilometer long, delivered about 6 million tons of sediment from the floodplain into the river – equivalent to 6.4 percent of the total annual sediment load of the entire Mississippi River basin (which the Wabash contributes to) – in a matter of days. It would take nearly 250 years of bank erosion to displace the same amount of sediment along the bend, had the cutoff not occurred. Such sediment pulses, as they are known, are more often associated with mountain rivers, rather than the relatively level landscape of rural Illinois.

“The first kilometer-long channel was cut in eight days, which is a phenomenal rate of erosion,” Best said. “There were banks collapsing, sediment moving; it’s probably one of the most dynamic river environments you’ll ever see, and you don’t expect that in lowland, flat-grade rivers.”

The researchers found that, after each cutoff, the majority of the sediment was deposited locally. In particular, a large percentage of the sediment accumulated where the Wabash joins the Ohio River. The new layer of sediment, up to 7 meters thick, raised the bed of the Ohio River and required dredging so that barges could continue to use the river.

The Wabash River study demonstrated that cutoffs can have large, immediate effects on sediment transport and deposition in a river – processes not accounted for in current models of meandering rivers.

“If we look at river systems and their role in the landscape, one of their most fundamental roles from a geoscience perspective is that they transport sediment from the land surfaces to ocean basins,” Rhoads said. “What has not been recognized is that these cutoff events can actually deliver large amounts of sediment to the river very rapidly. Then, the question is, since cutoffs are ubiquitous along a lot of meandering rivers, could this be something that we have not recognized fully as a major sediment delivery mechanism for all meandering rivers?”

The researchers plan to continue monitoring the cutoff and the areas just upstream and downstream to document how the cutoffs contribute to the river’s evolution. They anticipate that the river will abandon the bend and the first cutoff as more water is directed through the second cutoff, a more direct route for the river to flow. The abandoned bend will become a new wetland area, shaping the local ecology. The researchers will continue to measure and model changes in flow velocity, sediment transport and morphology in the river as the cutoff channel widens, providing valuable insight into cutoff effects and perhaps contributing to a model that could predict where such sediment pulses could occur.

“Our study brings attention to a whole range of elements – the basic science, the local effects, the ecological effects, the commercial effects – all from this one mechanism of channel change,” s said. “A lot of the meandering models that are out there treat cutoffs very schematically and they don’t deal with the processes that are occurring once a cutoff develops. I think that our work could really make people rethink that aspect of modeling the long-term evolution of meander bends.”

The National Science Foundation supported this work.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>