Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers advance understanding of mountain watersheds

30.10.2015

University of Wyoming geoscientists have discovered that the underground water-holding capacity of mountain watersheds may be controlled by stresses in the earth's crust. The results, which may have important ramifications for understanding streamflow and aquifer systems in upland watersheds, appears Oct. 30 in Science, one of the world's leading scientific journals.

The scientists conducted geophysical surveys to estimate the volume of open pore space in the subsurface at three sites around the country. Computer models of the state of stress at those sites showed remarkable agreement with the geophysical images.


James St. Clair, a University of Wyoming doctoral student, is the lead author on a Science paper that discovers the distribution of porosity in the subsurface of mountain watersheds can be determined by looking at the state of stress in the earth's crust.

Steve Holbrook Photo

The surprising implication, says Steve Holbrook, a UW professor in the Department of Geology and Geophysics, is that scientists may be able to predict the distribution of pore space in the subsurface of mountain watersheds by looking at the state of stress in the earth's crust. That state of stress controls where subsurface fractures are opening up -- which, in turn, creates the space for water to reside in the subsurface, he says.

"I think this paper is important because it proposes a new theoretical framework for understanding the large-scale porosity structure of watersheds, especially in areas with crystalline bedrock (such as granite or gneiss)," Holbrook says. "This has important implications for understanding runoff in streams, aquifer recharge and the long-term evolution of landscapes."

James St. Clair, a UW doctoral student, is lead author of the paper, titled "Geophysical Imaging Reveals Topographic Stress Control of Bedrock Weathering." Holbrook, Cliff Riebe, a UW associate professor of geology and geophysics; and Brad Carr, a research scientist in geology and geophysics; are co-authors of the paper.

Researchers from MIT, UCLA, the University of Hawaii, Johns Hopkins University, Duke University and the Colorado School of Mines also contributed.

Weathered bedrock and soil together make up the life-sustaining layer at Earth's surface commonly referred to as the "critical zone." Two of the three study sites were part of the national Critical Zone Observatory (CZO) network -- Gordon Gulch in Boulder Creek, Colo., and Calhoun Experimental Forest, S.C. The third study site was Pond Branch, Md., near Baltimore.

"The paper provides a new framework for understanding the distribution of permeable fractures in the critical zone (CZ). This is important because it provides a means for predicting where in the subsurface there are likely to be fractures capable of storing water and/or supporting groundwater flow," St. Clair says. "Since we cannot see into the subsurface without drilling holes or performing geophysical surveys, our results provide the means for making first order predictions about CZ structure as a function of the local topography and knowledge (or an estimate) of the regional tectonic stress conditions."

The research included a combination of geophysical imaging of the subsurface -- conducted by UW's Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) -- and numerical models of the stress distribution in the subsurface, work that was done at MIT and the University of Hawaii, Holbrook says.

The team performed seismic refraction and electrical resistivity surveys to determine the depth of bedrock at the three sites, which were chosen due to varying topography and ambient tectonic stress. At the two East Coast sites, the bedrock showed a surprising mirror-image relationship to topography; at the Rocky Mountain site, the bedrock was parallel to topography. In each case, the stress models successfully predicted the bedrock pattern.

"We found a remarkable agreement between the predictions of those stress models and the images of the porosity in the subsurface with geophysics at a large scale, at the landscape scale," Holbrook says. "It's the first time anyone's really looked at this at the landscape scale."

St. Clair says he was fortunate to work with a talented group of scientists with an extensive amount of research experience. He adds the experience improved his ability to work with a group of people with diverse backgrounds and improve his writing.

"Our results may be important to hydrologists, geomorphologists and geophysicists," St. Clair says. "Hydrologists, because it provides a means for identifying where water may be stored or where the flow rates are likely to be high; geomorphologists, because our results predict where chemical weathering rates are likely to be accelerated due to increased fluid flow along permeable fractures; and geophysicists, because it points out the potential influence of shallow stress fields on the seismic response of the CZ."

Despite the discovery, Holbrook says there is still much work to be done to test this model in different environments.

"But, now we have a theoretical framework to guide that work, as well as unique geophysical data to suggest that the hypothesis has merit," he says.

###

The work was supported by the National Science Foundation's (NSF) EPSCoR program, the U.S. Army Research Office and the NSF Critical Zone Observatory Network.

Media Contact

Steve Holbrook
steveh@uwyo.edu
307-766-2427

http://www.uwyo.edu 

Steve Holbrook | EurekAlert!

Further reports about: NSF Wyoming fractures landscape scale structure theoretical framework topography

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>