Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers advance understanding of mountain watersheds

30.10.2015

University of Wyoming geoscientists have discovered that the underground water-holding capacity of mountain watersheds may be controlled by stresses in the earth's crust. The results, which may have important ramifications for understanding streamflow and aquifer systems in upland watersheds, appears Oct. 30 in Science, one of the world's leading scientific journals.

The scientists conducted geophysical surveys to estimate the volume of open pore space in the subsurface at three sites around the country. Computer models of the state of stress at those sites showed remarkable agreement with the geophysical images.


James St. Clair, a University of Wyoming doctoral student, is the lead author on a Science paper that discovers the distribution of porosity in the subsurface of mountain watersheds can be determined by looking at the state of stress in the earth's crust.

Steve Holbrook Photo

The surprising implication, says Steve Holbrook, a UW professor in the Department of Geology and Geophysics, is that scientists may be able to predict the distribution of pore space in the subsurface of mountain watersheds by looking at the state of stress in the earth's crust. That state of stress controls where subsurface fractures are opening up -- which, in turn, creates the space for water to reside in the subsurface, he says.

"I think this paper is important because it proposes a new theoretical framework for understanding the large-scale porosity structure of watersheds, especially in areas with crystalline bedrock (such as granite or gneiss)," Holbrook says. "This has important implications for understanding runoff in streams, aquifer recharge and the long-term evolution of landscapes."

James St. Clair, a UW doctoral student, is lead author of the paper, titled "Geophysical Imaging Reveals Topographic Stress Control of Bedrock Weathering." Holbrook, Cliff Riebe, a UW associate professor of geology and geophysics; and Brad Carr, a research scientist in geology and geophysics; are co-authors of the paper.

Researchers from MIT, UCLA, the University of Hawaii, Johns Hopkins University, Duke University and the Colorado School of Mines also contributed.

Weathered bedrock and soil together make up the life-sustaining layer at Earth's surface commonly referred to as the "critical zone." Two of the three study sites were part of the national Critical Zone Observatory (CZO) network -- Gordon Gulch in Boulder Creek, Colo., and Calhoun Experimental Forest, S.C. The third study site was Pond Branch, Md., near Baltimore.

"The paper provides a new framework for understanding the distribution of permeable fractures in the critical zone (CZ). This is important because it provides a means for predicting where in the subsurface there are likely to be fractures capable of storing water and/or supporting groundwater flow," St. Clair says. "Since we cannot see into the subsurface without drilling holes or performing geophysical surveys, our results provide the means for making first order predictions about CZ structure as a function of the local topography and knowledge (or an estimate) of the regional tectonic stress conditions."

The research included a combination of geophysical imaging of the subsurface -- conducted by UW's Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) -- and numerical models of the stress distribution in the subsurface, work that was done at MIT and the University of Hawaii, Holbrook says.

The team performed seismic refraction and electrical resistivity surveys to determine the depth of bedrock at the three sites, which were chosen due to varying topography and ambient tectonic stress. At the two East Coast sites, the bedrock showed a surprising mirror-image relationship to topography; at the Rocky Mountain site, the bedrock was parallel to topography. In each case, the stress models successfully predicted the bedrock pattern.

"We found a remarkable agreement between the predictions of those stress models and the images of the porosity in the subsurface with geophysics at a large scale, at the landscape scale," Holbrook says. "It's the first time anyone's really looked at this at the landscape scale."

St. Clair says he was fortunate to work with a talented group of scientists with an extensive amount of research experience. He adds the experience improved his ability to work with a group of people with diverse backgrounds and improve his writing.

"Our results may be important to hydrologists, geomorphologists and geophysicists," St. Clair says. "Hydrologists, because it provides a means for identifying where water may be stored or where the flow rates are likely to be high; geomorphologists, because our results predict where chemical weathering rates are likely to be accelerated due to increased fluid flow along permeable fractures; and geophysicists, because it points out the potential influence of shallow stress fields on the seismic response of the CZ."

Despite the discovery, Holbrook says there is still much work to be done to test this model in different environments.

"But, now we have a theoretical framework to guide that work, as well as unique geophysical data to suggest that the hypothesis has merit," he says.

###

The work was supported by the National Science Foundation's (NSF) EPSCoR program, the U.S. Army Research Office and the NSF Critical Zone Observatory Network.

Media Contact

Steve Holbrook
steveh@uwyo.edu
307-766-2427

http://www.uwyo.edu 

Steve Holbrook | EurekAlert!

Further reports about: NSF Wyoming fractures landscape scale structure theoretical framework topography

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>