Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Finds Methane Hydrate in Gulf Using New Search Method

03.02.2010
A Baylor University researcher has used a new search method that he adapted for use on the seafloor to find a potentially massive source of hydrocarbon energy called methane hydrate, a frozen form of natural gas, in a portion of the Gulf of Mexico.

Dr. John Dunbar, associate professor of geology at Baylor, and his team used an electrical resistivity method to acquire geophysical data at the site, located roughly 50 miles off the Louisiana coast. The Baylor researchers were able to provide a detailed map of where the methane hydrate is located and how deep it extends underneath the seafloor.

Located in an area called the Mississippi Canyon, the site is about 3,000-feet-wide, 3,000-feet under water, and has both active and dormant gas vents. Scientists have been researching the site since 2001, but have not been able to ascertain where the hydrate is located nor how much is there until now.

“The conventional search methods have been fairly effective in certain situations, but the resistivity method is a totally different approach,” Dunbar said. “The benefit to the resistivity method is it shows the near-bottom in greater detail, and that is where the methane hydrate is located in this case. This research shows the resistivity method works and is effective.”

Dunbar and his research team injected a direct electrical current into the seafloor to measure the resistivity of the sediment beneath the sea floor. The measurement of resistivity – the ability of a material to resist conduction of electricity – showed the researchers where the methane hydrate is located. To do this, Dunbar and his team dragged a “sled” – a device with a nearly one-kilometer-long towed array – back and forth over the site, injecting the electrical current. Sediment containing methane hydrate within its pores showed higher resistivity, compared to sediment containing salt water. While the measurement of resistivity has been used for some time, the method has seldom been used at deep depths.

The new method showed researchers that the methane hydrate was located only in limited spots, usually occurring along faults under the sea floor. Dunbar said the method also showed the methane hydrate is not as abundant as previously thought at the site.

The U.S. Department of Energy has awarded Dunbar more than $115,000 to continue researching the site. Dunbar and his team will reconfigure the towed array and shorten the length of it to about 1,500 feet. They also will cluster sensors around certain areas on the array, which will give researchers a clearer picture of how deep the methane hydrate extends and will allow them to create a three-dimensional picture of the underwater site.

An ice-like solid, methane hydrate is found beneath the seafloor in many locations across the globe, usually at depths greater than 3,000 feet. The most common place to find gas hydrate mounds in the Gulf of Mexico are along the intersections of faults with the seafloor. According to the U.S Geological Survey, the nation’s methane hydrate deposits are estimated to hold a vast 200 trillion cubic feet of natural gas. If just one percent of those deposits are commercially produced, it would more than double the country’s natural gas reserves.

For more information, contact Matt Pene, assistant director of media communications at Baylor, at (254) 710-4656.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu/pr

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>