Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Finds Methane Hydrate in Gulf Using New Search Method

03.02.2010
A Baylor University researcher has used a new search method that he adapted for use on the seafloor to find a potentially massive source of hydrocarbon energy called methane hydrate, a frozen form of natural gas, in a portion of the Gulf of Mexico.

Dr. John Dunbar, associate professor of geology at Baylor, and his team used an electrical resistivity method to acquire geophysical data at the site, located roughly 50 miles off the Louisiana coast. The Baylor researchers were able to provide a detailed map of where the methane hydrate is located and how deep it extends underneath the seafloor.

Located in an area called the Mississippi Canyon, the site is about 3,000-feet-wide, 3,000-feet under water, and has both active and dormant gas vents. Scientists have been researching the site since 2001, but have not been able to ascertain where the hydrate is located nor how much is there until now.

“The conventional search methods have been fairly effective in certain situations, but the resistivity method is a totally different approach,” Dunbar said. “The benefit to the resistivity method is it shows the near-bottom in greater detail, and that is where the methane hydrate is located in this case. This research shows the resistivity method works and is effective.”

Dunbar and his research team injected a direct electrical current into the seafloor to measure the resistivity of the sediment beneath the sea floor. The measurement of resistivity – the ability of a material to resist conduction of electricity – showed the researchers where the methane hydrate is located. To do this, Dunbar and his team dragged a “sled” – a device with a nearly one-kilometer-long towed array – back and forth over the site, injecting the electrical current. Sediment containing methane hydrate within its pores showed higher resistivity, compared to sediment containing salt water. While the measurement of resistivity has been used for some time, the method has seldom been used at deep depths.

The new method showed researchers that the methane hydrate was located only in limited spots, usually occurring along faults under the sea floor. Dunbar said the method also showed the methane hydrate is not as abundant as previously thought at the site.

The U.S. Department of Energy has awarded Dunbar more than $115,000 to continue researching the site. Dunbar and his team will reconfigure the towed array and shorten the length of it to about 1,500 feet. They also will cluster sensors around certain areas on the array, which will give researchers a clearer picture of how deep the methane hydrate extends and will allow them to create a three-dimensional picture of the underwater site.

An ice-like solid, methane hydrate is found beneath the seafloor in many locations across the globe, usually at depths greater than 3,000 feet. The most common place to find gas hydrate mounds in the Gulf of Mexico are along the intersections of faults with the seafloor. According to the U.S Geological Survey, the nation’s methane hydrate deposits are estimated to hold a vast 200 trillion cubic feet of natural gas. If just one percent of those deposits are commercially produced, it would more than double the country’s natural gas reserves.

For more information, contact Matt Pene, assistant director of media communications at Baylor, at (254) 710-4656.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu/pr

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>