Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research vessel Polarstern ends 25th Arctic expedition

13.10.2010
Successful research in marine regions between Spitsbergen, Greenland and Canada

The research vessel Polarstern returned to Bremerhaven from a four-month expedition on Saturday, 9 October. On its 25th mission in the Arctic the ship covered a total of around 16,620 nautical miles (corresponding to about 30,780 kilometres). The focus of the three legs was on oceanographic, biological and geoscientific studies. Over 120 scientists and technicians from institutes in six nations took part in the expedition.

The Polarstern launched its journey from Bremerhaven on 10 June, heading for the Greenland Sea. This is an important area for the formation of deep water that thus ensures thorough mixing of the ocean and drives global marine currents. The crew under chief scientist Dr. Gereon Budéus from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association picked up instruments that were installed 3.7 kilometres deep in the central Greenland Sea. The measuring devices at these moorings recorded the temperature and salinity of the water for more than a year. “This hydrographic work forms a major piece of the puzzle with regard to our long-term series of tests over a period of ten years, which are indispensable for climate-related research,” explains Budéus.

After a brief change in staff in Longyearbyen (Spitsbergen) the vessel headed to the Fram Strait, the marine region between Spitzbergen and Greenland, and to the so-called HAUSGARTEN, a deep-sea long-term observatory on the continental slope west of Spitsbergen run by the Alfred Wegener Institute for over ten years now. There chief scientist Dr. Thomas Soltwedel and his team documented how changing climate conditions influence the marine Arctic ecosystem. Biologists and oceanographers examined over 160 stations altogether, both here and in the expedition’s second area of study, a hydrographic transect across the Fram Strait. A chain of moorings across the Fram Strait that has been monitoring the exchange between the North Atlantic and the Arctic Ocean for 15 years was replaced so that the changes in temperature and salinity can continue to be followed next year. A highlight of the second leg was the first under-ice mission for the autonomous underwater vehicle (AUV) of the AWI deep-sea group. The unmanned AUV is equipped with various sensor systems and sampling devices. It supplies valuable information on physical, chemical and biological parameters in the ecologically important transition zone between the ice-covered ocean and its ice-free margins.

The third leg focused on geoscientific topics. Due to an internal Canadian conflict involving the procedure for research approval, the work had to be restricted to Greenland waters. The Polarstern sailed north beyond the 80th degree of latitude for this purpose. The team under chief scientist Dr. Volkmar Damm from the Federal Institute for Geosciences and Natural Resources was able to research areas in the Nares Strait, in which the available database has been very fragmentary up to now due to sea ice conditions. “The currently available results show the Greenland portion of Baffin Bay to be a typical passive continental margin with perturbations towards the sea and deep basin structures with thick sediment strata,” reports Damm. The geophysicists reveal new findings on the structures of the deeper subsoil of Baffin Bay and the characteristics of the sediments and their content of microbial communities. On this basis, researchers can better reconstruct the geological past of Baffin Bay and the deposition history of the sediments in this Arctic marginal sea. The results are important, among other things, for an understanding of palaeological changes and the microbial decomposition of organic material under polar conditions. For Captain Uwe Pahl sailing through Nares Strait and Smith Sound was a highlight of the expedition. “The relatively narrow strait between northeast Canada and Greenland’s westernmost point requires concentrated navigation to use all scientific equipment securely.”

Even though the scientific questions and thus the technical requirements of the three legs varied greatly, all chief scientists agreed on one point: the working conditions onboard Polarstern are outstanding because of the optimal cooperation between the crew and scientists.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the sixteen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>