Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team breaks the ice with new estimate of glacier melt

03.03.2010
The melting of glaciers is well documented, but when looking at the rate at which they have been retreating, a team of international researchers steps back and says not so fast.

Previous studies have largely overestimated mass loss from Alaskan glaciers over the past 40-plus years, according to Erik Schiefer, a Northern Arizona University geographer who coauthored a paper in the February issue of Nature Geoscience that recalculates glacier melt in Alaska.

The research team, led by Étienne Berthier of the Laboratory for Space Studies in Geophysics and Oceanography at the Université de Toulouse in France, says that glacier melt in Alaska between 1962 and 2006 contributed about one-third less to sea-level rise than previously estimated.

Schiefer said melting glaciers in Alaska originally were thought to contribute about .0067 inches to sea-level rise per year. The team’s new calculations put that number closer to .0047 inches per year. The numbers sound small, but as Schiefer said, “It adds up over the decades.”

While the team looked at three-fourths of all the ice in Alaska, Schiefer noted, “We’re also talking about a small proportion of ice on the planet. When massive ice sheets (such as in the Antarctic and Greenland) are added in, you’re looking at significantly greater rates of sea-level rise.”

Schiefer said the team plans to use the same methodologies from the Alaskan study in other glacial regions to determine if further recalibrations of ice melt are in order. These techniques use satellite imagery that spans vast areas of ice cover.

Previous methods estimated melt for a smaller subset of individual glaciers. The most comprehensive technique previously available used planes that flew along the centerlines of selected glaciers to measure ice surface elevations. These elevations were then compared to those mapped in the 1950s and 1960s. From this, researchers inferred elevation changes and then extrapolated this to other glaciers.

Two factors led to the original overestimation of ice loss with this method, Schiefer said. One is the impact of thick deposits of rock debris that offer protection from solar radiation and, thus, melting. The other was not accounting for the thinner ice along the edges of glaciers that also resulted in less ice melt.

Schiefer and his colleagues used data from the SPOT 5 French satellite and the NASA/Japanese ASTER satellite and converted the optical imagery to elevation information. They then compared this information to the topographical series maps of glacial elevations dating back to the 1950s.

While the team determined a lower rate of glacial melt during a greater than 40-year span, Schiefer said other studies have demonstrated the rate of ice loss has more than doubled in just the last two decades.

“With current projections of climate change, we expect that acceleration to continue,” Schiefer said. This substantial increase in ice loss since the 1990s is now pushing up the rise in sea level to between .0098 inches and .0118 inches per year—more than double the average rate for the last 40 years.

Working on the Alaskan glacial melt revision with Schiefer and Berthier were Garry Clarke of the University of British Columbia, Brian Menounos of the University of Northern British Columbia and Frédérique Rémy of the Université de Toulouse.

Lisa Nelson | EurekAlert!
Further information:
http://www.nau.edu

Further reports about: Alaskan Glaciers Greenland glacial melt ice loss ice sheet sea-level rise

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>