Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Advances Knowledge of Antarctica's Climate History

11.08.2008
North Dakota State University researchers, Fargo, are among the leaders of a group of National Science Foundation-funded scientists who have discovered the last traces of tundra on the interior of Antarctica before temperatures began a relentless drop millions of years ago.

The collaboration’s research, which resulted in a major advance in the understanding of Antarctica’s climatic history, appears in the Aug. 4 issue of the Proceedings of the National Academy of Sciences.

The international team of scientists headed up by NDSU geoscientists Allan Ashworth and Adam Lewis and David Marchant, an earth scientist at Boston University, combined evidence from glacial geology, paleoecology, dating of volcanic ashes and computer modeling, to report a major climate change centered on 14 million years ago. The three scientists often spend months living in tents in the Transantarctic Mountains’ Dry Valleys doing their research.

They have documented the timing and magnitude of the continent’s shift from warm, temperate glaciers and fringing tundra to polar glaciers and polar tundra. “The contrast couldn’t be more striking,” Marchant said. “It is like comparing Tierra del Fuego today with the surface of Mars—and this transition took place over a geologically short interval of roughly 200,000 years.”

According to Lewis, the discovery of lake deposits with perfectly preserved fossils of mosses, diatoms and ostracods is particularly exciting to scientists. “They are the first to be found even though scientific expeditions have been visiting the Dry Valleys since their discovery during the first Scott expedition in 1902-03,” said Lewis.

For Ashworth, the fossils are a paleoecological treasure trove. He notes that some ancient species of diatoms and mosses are indistinguishable from the ones today, which occur throughout the world except Antarctica.

“To be able to identify living species amongst the fossils is phenomenal. To think that modern counterparts have survived 14 million years on Earth without any significant changes in the details of their appearances is striking,” said Ashworth, the principal paleoecologist in the research. “It must mean that these organisms are so well-adapted to their habitats that in spite of repeated climate changes and isolation of populations for millions of years, they have not become extinct but have survived.”

The fossil finds and dating of volcanic ash show that roughly 14.1 million years ago, the area was home to tundra, “wet” glaciers typical of those of the mountains of Tierra Del Fuego in the high southern latitudes and seasonally ice-free lakes. The beds of the long-gone lakes contain layers of sediments where dying plants and insects accumulated and were preserved.

The mean summertime temperatures would have dropped in that period by as much as 8 degrees Celsius. On average, the summertime temperatures in the Dry Valleys 14.1 million years ago would have been as much as 17 degrees warmer than the present-day average.

According to Lewis, the freshness of the crystals and glass in the volcanic ash and the preservation of cellular detail in the fossils indicate they have been permanently frozen since 13.9 million years ago.

The research conclusion suggests that even when global atmospheric temperatures were warmer than they are now, as occurred 3.5 million years ago during the Pliocene Epoch, and as might occur in the near future as a consequence of global warming, there was no significant melting of the East Antarctic ice sheet inland of the Dry Valleys. According to Ashworth, if this conclusion stands the test of time, it suggests a very robust ice sheet in this sector of Antarctica, and emphasizes the complex and non-uniform response of Antarctica’s ice sheets to global change.

He adds, "The huge uncertainties regarding the inherently unstable marine-based West Antarctic ice sheet, however, make all predictions about the future based on past behavior educated guesses at best.”

The National Science Foundation, in its role as the manager of the United States Antarctic Program, supported the work of Ashworth, Lewis and Marchant as well as United States researchers from Lamont-Doherty Earth Observatory, Ohio State University and the University of Montana.

The work of the research team in the field also appears in the documentary “Ice People” by Emmy-award-winning director Anne Aghion. The film will be screened in science museums throughout Australia during the month of August and will air on SBS Australian Television on August 24. Ice People received support from the National Science Foundation’s Antarctic Artists and Writers Program. It has been screened at international film festivals in New York, San Francisco and Jerusalem and is scheduled to air on the Sundance Channel in 2009.

For more information about the study:
http://www.ndsu.nodak.edu/instruct/ashworth/Boreas/index.htm
Proceedings of the National Academy of Sciences
http://www.pnas.org/content/105/31/10676

Steven Bergeson | Newswise Science News
Further information:
http://www.ndsu.nodak.edu/
http://www.ndsu.nodak.edu/instruct/ashworth/Boreas/index.htm
http://www.icepeople.com

More articles from Earth Sciences:

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>