Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research suggests autumn is ending later in the northern hemisphere


A study by the University of Southampton suggests that on average the end of Autumn is taking place later in the year and Spring is starting slightly earlier.

A team of researchers examined satellite imagery covering the northern hemisphere over a 25 year period (1982 - 2006), and looked for any seasonal changes in vegetation by making a measure of its 'greenness'. They examined in detail, at daily intervals, the growth cycle of the vegetation – identifying physical changes such as leaf cover, colour and growth.

This is a photo of autumn leaves.

Credit: University of Southampton

The project was led by University of Southampton Professor of Geography Peter Atkinson, who worked with his colleague Dr Jadunandan Dash and in collaboration with Professor Jeganathan Chockalingam from the Department of Remote Sensing at the Birla Institute of Technology in India.

Professor Atkinson says: "There is much speculation about whether our seasons are changing and if so, whether this is linked to climate change. Our study is another significant piece in the puzzle, which may ultimately answer this question."

... more about:
»Atkinson »Autumn »Southampton »cycles »satellite »species

The team was able to examine the data for specific vegetation types: 'mosaic' vegetation (grassland, shrubland, forest and cropland); broad-leaved deciduous forest; needle-leaved evergreen forest; needle-leaved deciduous and evergreen forest; mixed broad-leaved and needle-leaved forest; and mixed-forest, shrubland and grassland. They analysed data across all the groups, recognising that forests which have not changed size due to human intervention, for example through forestry or farming, provide the most reliable information on vegetation response to changes in our climate.

The most pronounced change found by the researchers was in the broad-leaved deciduous and needleleaved deciduous forest groups, showing that Autumn is becoming significantly later. This delay in the signs of Autumn was generally more pronounced than any evidence for an earlier onset of Spring, although there is evidence across the groups that Spring is arriving slightly earlier.

Professor Peter Atkinson comments: "Previous studies have reported trends in the start of Spring and end of Autumn, but we have studied a longer time period and controlled for forest loss and vegetation type, making our study more rigorous and with a greater degree of accuracy.

"Our research shows that even when we control for land cover changes across the globe a changing climate is significantly altering the vegetation growth cycles for certain types of vegetation. Such changes may have consequences for the sustainability of the plants themselves, as well as species which depend on them, and ultimately the climate through changes to the carbon cycle."

The study used the Global Inventory Modelling and Mapping Studies (GIMMS) dataset and combined satellite imagery with an innovative data processing method to study vegetation cycles.


The paper Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type is published in the journal Remote Sensing of the Environment and can be found at:

Peter Franklin |
Further information:

Further reports about: Atkinson Autumn Southampton cycles satellite species

More articles from Earth Sciences:

nachricht Unexpected information about Earth's climate history from Yellow River sediment
09.10.2015 | Uppsala University

nachricht Mapping glaciers
09.10.2015 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>