Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on freak wave hot spots

07.08.2009
Simulations point to changes in water depth and currents as increasing likelihood of rogue waves

Stories of ships mysteriously sent to watery graves by sudden, giant waves have long puzzled scientists and sailors. New research by San Francisco State professor Tim Janssen suggests that changes in water depth and currents, which are common in coastal areas, may significantly increase the likelihood of these extreme waves.

Published in the Journal of Physical Oceanography, Janssen's wave model simulations show that focusing of waves by shoals and currents could increase the likelihood of a freak wave by as much as 10 times. Although scientists cannot predict the occurrence of individual extreme waves, Janssen's findings help pinpoint conditions and locations favorable for giant waves.

Extreme waves, also known as "freak" or "rogue" waves, measure roughly three times the size of the average wave height of a given sea state. Recorded monster waves have exceeded 60-feet -- the approximate size of a six-story building. Janssen's research suggests that in areas where wave energy is focused, the probability of freak-waves is much greater than previously believed.

Wave focal zones are particularly common in coastal areas where water depth variations and strong currents can result in dramatic focusing of wave energy. Such effects are particularly well known around river mouths and coastal inlets, restricting accessibility for shipping due to large, breaking waves near the inlet, or resulting in erosion issues at nearby beaches. Extreme examples of wave focusing over coastal topography include world-class surf spots, such as Mavericks and Cortez Banks in California. The identification of freak wave hot spots is also important for shipping and navigation in coastal areas, and the design of offshore structures.

"In a normal wave field, on average, roughly three waves in every 10,000 are extreme waves," Janssen said. "In a focal zone, this number could increase to about three in every 1,000 waves. In a focal zone, the average wave height is already increased due to the focusing of energy so that an extreme wave in such a high energy area can potentially be very energetic and dangerous."

Janssen's wave simulations estimated the evolution of waves in open oceans, waves interacting with an opposing current, and waves traveling over a topographical feature such as a reef. The simulations show that freely developing waves maintain normal statistical properties with a small likelihood of extremes. But when the waves are focused by variations in water depth or currents, the rapid increase in energy drives wave interactions that enhance the likelihood of extreme waves.

"We found that if the focusing is sufficiently strong and abrupt, wave interactions create conditions favorable to extreme waves," Janssen said. "When we gradually increase the focal strength, initially wave interactions are weak and statistics remain normal. However, when increasing the focal strength beyond a certain threshold, suddenly wave interactions are enhanced and freak waves are much more likely than normal. It appears that wherever waves undergo a rapid transformation, freak waves can be much more likely than we would otherwise expect."

Tim Janssen is an assistant professor of Geosciences at San Francisco State University. The paper is co-authored by T.H.C. Herbers of the Naval Postgraduate School in Monterey, Calif.

"Nonlinear wave statistics in a focal zone," will be published in the August issue of the Journal of Physical Oceanography, a journal of the American Meteorological Society.

Michael Bruntz | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>