Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on freak wave hot spots

07.08.2009
Simulations point to changes in water depth and currents as increasing likelihood of rogue waves

Stories of ships mysteriously sent to watery graves by sudden, giant waves have long puzzled scientists and sailors. New research by San Francisco State professor Tim Janssen suggests that changes in water depth and currents, which are common in coastal areas, may significantly increase the likelihood of these extreme waves.

Published in the Journal of Physical Oceanography, Janssen's wave model simulations show that focusing of waves by shoals and currents could increase the likelihood of a freak wave by as much as 10 times. Although scientists cannot predict the occurrence of individual extreme waves, Janssen's findings help pinpoint conditions and locations favorable for giant waves.

Extreme waves, also known as "freak" or "rogue" waves, measure roughly three times the size of the average wave height of a given sea state. Recorded monster waves have exceeded 60-feet -- the approximate size of a six-story building. Janssen's research suggests that in areas where wave energy is focused, the probability of freak-waves is much greater than previously believed.

Wave focal zones are particularly common in coastal areas where water depth variations and strong currents can result in dramatic focusing of wave energy. Such effects are particularly well known around river mouths and coastal inlets, restricting accessibility for shipping due to large, breaking waves near the inlet, or resulting in erosion issues at nearby beaches. Extreme examples of wave focusing over coastal topography include world-class surf spots, such as Mavericks and Cortez Banks in California. The identification of freak wave hot spots is also important for shipping and navigation in coastal areas, and the design of offshore structures.

"In a normal wave field, on average, roughly three waves in every 10,000 are extreme waves," Janssen said. "In a focal zone, this number could increase to about three in every 1,000 waves. In a focal zone, the average wave height is already increased due to the focusing of energy so that an extreme wave in such a high energy area can potentially be very energetic and dangerous."

Janssen's wave simulations estimated the evolution of waves in open oceans, waves interacting with an opposing current, and waves traveling over a topographical feature such as a reef. The simulations show that freely developing waves maintain normal statistical properties with a small likelihood of extremes. But when the waves are focused by variations in water depth or currents, the rapid increase in energy drives wave interactions that enhance the likelihood of extreme waves.

"We found that if the focusing is sufficiently strong and abrupt, wave interactions create conditions favorable to extreme waves," Janssen said. "When we gradually increase the focal strength, initially wave interactions are weak and statistics remain normal. However, when increasing the focal strength beyond a certain threshold, suddenly wave interactions are enhanced and freak waves are much more likely than normal. It appears that wherever waves undergo a rapid transformation, freak waves can be much more likely than we would otherwise expect."

Tim Janssen is an assistant professor of Geosciences at San Francisco State University. The paper is co-authored by T.H.C. Herbers of the Naval Postgraduate School in Monterey, Calif.

"Nonlinear wave statistics in a focal zone," will be published in the August issue of the Journal of Physical Oceanography, a journal of the American Meteorological Society.

Michael Bruntz | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>