Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research on sauropod gigantism summarized in publicly available collection

14.01.2014
Giants of Earth's history still pose a wealth of riddles / Publication in PLOS ONE

Sauropods, the largest land animals in Earth's history, are still mightily puzzling the scientists. These plant-eating dinosaurs with their long necks and small heads could reach a height of 10 meters or more and dominated all other land vertebrates in terms of size. They could weigh up to 80 tons, more than any other known land vertebrate.


Replica of the reconstructed skeleton of Argentinosaurus huinculensis, on display as part of a special exhibition at the Senckenberg Natural History Museum, Frankfurt am Main. The fossil remains of this titanosaur that lived in the Early Cretaceous period were discovered in Neuquén province, Argentina. Argentinosaurus huinculensis is currently the largest known sauropod with a total length of 38 meters and an estimated total body weight of 75 tons.
photo: Eva Maria Griebeler

One question that has been intensely debated is how these giants of the animal kingdom regulated their own body temperature. Dr. Eva Maria Griebeler of Johannes Gutenberg University Mainz has now shown that the hypothesis is inaccurate that their body size was limited only because the associated rise in body temperature could have resulted in potential overheating.

According to the calculations of the Mainz-based ecologist, the body temperature of these animals did not increase with body weight. Her estimates indicate that sauropods may have had an average body temperature of some 28 degrees Celsius. The upper limit for the body temperature that can be tolerated by vertebrate species living today is 45 degrees Celsius. The body temperatures that Griebeler postulates for the sauropods are thus well below those of today’s endothermic vertebrates but consistent with those of ectothermic monitor lizards. Her calculations of sauropod body temperature take into account the relationship between the maximum rate of growth and the basal metabolic rate of an animal, whereby the latter is largely determined by body temperature.

Griebeler's work is part of a collection that brings together the results of recent research into sauropod gigantism. The gigantism of these vertebrates, unique in the history of the Earth, raises many questions, such as why no other land creatures have ever achieved this size and what their bauplan, physiology, and life cycle would have been like. The collection put together by the leading open access journal PLOS ONE consists of 14 contributions from the fields of ecology, morphology, animal nutrition, and paleontology that all address the fundamental question of how the sauropods managed to become so extraordinarily massive. "We are pleased that this new research is freely accessible not only to other scientists, but also to sauropod fans," said PD Dr. Eva Maria Griebeler. She and Dr. Jan Werner are members of the research group "Biology of the Sauropod Dinosaurs: The Evolution of Gigantism (FOR 533)," funded by the German Research Foundation (DFG). The collection was initiated as a result of a related international conference on this subject. Both scientists from the Ecology division at the Institute of Zoology at Mainz University have been working for more than six years within this research group. They have written three of the 14 contributions in the collection.

In one article, Jan Werner and his colleague Koen Stein of the University of Bonn describe a new method of determining the density of bone tissue and juxtapose sauropod data and results extrapolated for comparable endothermic mammals. Although the bone structure and the density of certain tissues of sauropods were similar to those of today's mammals, the results do not conclusively demonstrate that sauropods were also endothermic animals. Other functional aspects, such as similar weight-bearing stresses, could have resulted in the development of convergent forms of bone tissue.

Another article looks at the reproductive biology of sauropods. Here Werner and Griebeler discuss the hypothesis that a high rate of reproduction contributed to the gigantism of the large dinosaurs. They discovered that the reproductive pattern of most dinosaurs was similar to that of modern reptiles and birds. The reproductive pattern of theropods, i.e., ancestors of the modern birds, turned out to be comparable with that of birds, prosauropods, and sauropods rather than reptiles. However, contrary to the assumptions of previous studies, the calculations of the Mainz scientists did not corroborate the hypothesis that the large dinosaurs would have laid a particularly large number of eggs. In terms of total eggs produced annually, this number could not have exceeded 200 to 400 eggs for a sauropod weighing 75 tons. Today's large sea turtles are known to lay clutches in this range.

All 14 contributions in the collection 'Sauropod Gigantism: A Cross-Disciplinary Approach' are available online at the PLOS ONE website:

www.ploscollections.org/sauropodgigantism.

Photos:
http://www.uni-mainz.de/bilder_presse/10_zoologie_sauropoden_01.jpg
Replica of the reconstructed skeleton of Argentinosaurus huinculensis, on display as part of a special exhibition at the Senckenberg Natural History Museum, Frankfurt am Main. The fossil remains of this titanosaur that lived in the Early Cretaceous period were discovered in Neuquén province, Argentina. Argentinosaurus huinculensis is currently the largest known sauropod with a total length of 38 meters and an estimated total body weight of 75 tons.

photo: Eva Maria Griebeler

http://www.uni-mainz.de/bilder_presse/10_zoologie_sauropoden_02.jpg
Egg containing a titanosaur embryo, on display as part of a special exhibition at the Senckenberg Natural History Museum, Frankfurt am Main. This fossilized egg was discovered in Neuquén province, Argentina, and has an approximate diameter of 15 centimeters.

photo: Eva Maria Griebeler

http://www.uni-mainz.de/bilder_presse/10_zoologie_sauropoden_03.jpg
Titanosaur egg, on display as part of a special exhibition at the Senckenberg Natural History Museum, Frankfurt am Main. This fossil was discovered in Neuquén province, Argentina.

photo: Eva Maria Griebeler

Publications:
Eva Maria Griebeler
Body Temperatures in Dinosaurs: What Can Growth Curves Tell Us?
PLOS ONE, 30 October 2013
DOI: 10.1371/journal.pone.0074317
Koen W. H. Stein, Jan Werner
Preliminary Analysis of Osteocyte Lacunar Density in Long Bones of Tetrapods: All Measures Are Bigger in Sauropod Dinosaurs
PLOS ONE, 30 October 2013
DOI: 10.1371/journal.pone.0077109
Jan Werner, Eva Maria Griebeler
New Insights into Non-Avian Dinosaur Reproduction and Their Evolutionary and Ecological Implications: Linking Fossil Evidence to Allometries of Extant Close Relatives
PLOS ONE, 21 August 2013
DOI: 10.1371/journal.pone.0072862
Further information:
PD Dr. Eva Maria Griebeler
Ecology division
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-26621
fax +49 6131 39-23731
e-mail: em.griebeler@uni-mainz.de
http://www.oekologie.biologie.uni-mainz.de/people/evi/home.htm

Petra Giegerich | idw
Further information:
http://www.oekologie.biologie.uni-mainz.de/
http://www.ploscollections.org/sauropodgigantism

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>