Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals contrasting consequences of a warmer Earth

04.09.2012
A new study, by scientists from the Universities of York, Glasgow and Leeds, involving analysis of fossil and geological records going back 540 million years, suggests that biodiversity on Earth generally increases as the planet warms.

But the research says that the increase in biodiversity depends on the evolution of new species over millions of years, and is normally accompanied by extinctions of existing species. The researchers suggest that present trends of increasing temperature are unlikely to boost global biodiversity in the short term because of the long timescales necessary for new forms to evolve.

Instead, the speed of current change is expected to cause diversity loss. The study which is published in Proceedings of the National Academy of Sciences (PNAS) says that while warm periods in the geological past experienced increased extinctions, they also promoted the origination of new species, increasing overall biodiversity.

The new research is a refinement of an earlier study that analysed biodiversity over the same time interval, but with a less sophisticated data set, and concluded that a warming climate led to drops in overall diversity. Using the improved data that are now available, the researchers re-examined patterns of marine invertebrate biodiversity over the last 540 million years.

Lead author, Dr Peter Mayhew, of the Department of Biology at York, said: "The improved data give us a more secure picture of the impact of warmer temperatures on marine biodiversity and they show that, as before, there is more extinction and origination in warm geological periods. But, overall, warm climates seem to boost biodiversity in the very long run, rather than reducing it."

Dr Alistair McGowan, of the School of Geographical and Earth Sciences at the University of Glasgow said: "The previous findings always seemed paradoxical. Ecological studies show that species richness consistently increases towards the Equator, where it is warm, yet the relationship between biodiversity and temperature through time appeared to be the opposite. Our new results reverse these conclusions and bring them into line with the ecological pattern."

Professor Tim Benton, of the Faculty of Biological Sciences at the University of Leeds, added: "Science progresses by constantly re-examining conclusions in the light of better data. Our results seem to show that temperature improves biodiversity through time as well as across space. However, they do not suggest that current global warming is good for existing species. Increases in global diversity take millions of years, and in the meantime we expect extinctions to occur."

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>