Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research around the North Pole

20.10.2008
RV Polarstern returns home after its expedition through the Northeast and Northwest Passages

The German research vessel Polarstern has returned today to Bremerhaven from the Arctic Sea. It has cruised as the first research vessel ever both the Northeast and the Northwest Passages and thereby circled the North Pole.

The third part of the research vessel's 23rd Arctic expedition, operated by the Alfred Wegener Institute in the Helmholtz Association, started its journey on August 12th in Reykjavik and ended it on October 17th in Bremerhaven.

The ship travelled a distance of 10.800 nautical miles, equivalent to 20.000 kilometres. On board were 47 researchers from 12 nations, for example from Belgium, Germany, France, Japan, Canada, Korea, the Netherlands, Russia and the USA. Because of the small ice cover, the expedition members were able to research hitherto uncharted waters. The small sea ice cover presents a cause for concern regarding climate change in the Arctic Ocean. The aim of this expedition was to gather data on the development of the geology of the Arctic area.

The researchers around cruise leader Dr. Wilfried Jokat, geophysicist at the Alfred Wegener Institute, have discovered large sliding masses close beneath the seafloor of the East-Siberian continental shelf by means of sediment-acoustic parasound measurements. "Sliding masses are witnesses of great sediment relocations which appear, for instance, when large amounts of sediments are deposited," explains Jokat. The continental slope becomes instable and sediments slide down. Such a large amount of sediments causing a shift can only have one reason: the sediments were frozen in the ice masses of the East-Siberian mainland, thawed during an interglacial and unloaded their sediments with the melt water into the ocean.

"This is a spectacular finding. Large-scale glaciations in eastern Siberia within the younger geological past of 60.000 years and older are so far unknown," explains Prof. Dr. Rüdiger Stein, geologist at the Alfred Wegener Institute. Additional acoustic (seismic) data show that the East-Siberian Shelf was covered with ice over the last three million years only during a few glacial periods.

Further investigations are necessary to confirm this finding and particularly to time the reported events chronologically. The scientists have brought material in the form of sediment cores to Bremerhaven to achieve this. 16 soil samples could be taken on a transect of 700 kilometres from the Canada Basin via the Mendeleev Ridge into the Makarov Basin. The analysis will allow for the first time to compare the glacial history of the Northern USA and Canada with Siberia and to elaborate differences and parallels in detail. Furthermore, the data from the sediment cores can deliver information on the temporal and spatial changes of ocean currents and the extent of sea ice in the central Arctic Ocean. "We expect from these investigations important new insights into the control procedures of long and short term climate changes in the Arctic," says a delighted Stein.

Another focal point of this cruise was on the geological development of the Arctic Ocean during the last 90 million years. Seismic, an acoustic measurement method, allows peeking into the deep layers under the ocean floor down to 4.000 metres depth. "The collected data show that the ocean basin between the two Arctic ridge systems, the Lomonossov and the Mendeleev Ridge, are considerably older than estimated so far. Thus, the basins in the old part of the Arctic Ocean, the Makarov and the Canada Basin, have developed at about the same," reports Jokat. "The following detachment of the Lomonossov Ridge from the East-Siberian Shelf took place 60 million years ago - not without massive changes to the environment. The data present evidence of strong relocation processes in the deep-sea sediments," continues the geophysicist. "Many model representations about the development of the Arctic Ocean must be rethought on the basis of the new data," concludes Jokat.

Oceanographers regularly collect data on water temperature, density and salinity from the ship. Additionally, they brought out buoys on ice floes which autonomously conduct these measurements over one or two years. The oceanographers can thereby better understand how the water masses circulate in the Arctic Ocean. Integrated into long-term measurements, they can describe changing water temperatures and sea ice cover regarding climate change.

Biologists on board investigated the occurrence and distribution of the copepod Oithona similis in the Arctic Ocean. This small crab is an important part of the food web. It feeds, among other things, on small algae and animals and serves on its part as food for fish larvae. Another biological programme is aimed at collecting data on the distribution of birds, seals, whales and polar bears along the route. An almost continuous measurement of the seafloor and a programme for water probes rounded off the interdisciplinary scientific programme.

The measurements contribute to research within the framework of the International Polar Year, the European project DAMOCLES and the North Atlantic project of the German Federal Ministry of Education and Research. After the usual maintenance and repair work, Polarstern will leave on October 31st with the destination Cape town. There begins the Antarctic season 2008/09.

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and makes available to international science important infrastructure, e.g. the research icebreaker "Polarstern" and research stations in the Arctic and Antarctic. AWI is one of 15 research centres within the Helmholtz-Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:
http://www.awi.de

Further reports about: Arctic Arctic Ocean East-Siberian Pacific Ocean Pol Polarstern SIBERIA Shelf ice cover sea ice water temperature

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>