Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research at Mines Unearths New Dinosaur Species

01.03.2013
First fossil evidence shows small crocs fed on baby dinosaurs

A South Dakota School of Mines & Technology assistant professor and his team have discovered a new species of herbivorous dinosaur and today published the first fossil evidence of prehistoric crocodyliforms feeding on small dinosaurs.

Research by Clint Boyd, Ph.D., provides the first definitive evidence that plant-eating baby ornithopod dinosaurs were a food of choice for the crocodyliform, a now extinct relative of the crocodile family. While conducting their research, the team also discovered that this dinosaur prey was a previously unrecognized species of a small ornithopod dinosaur, which has yet to be named.

The evidence found in what is now known as the Grand Staircase Escalante-National Monument in southern Utah dates back to the late Cretaceous period, toward the end of the age of dinosaurs, and was published today in the academic journal PLOS ONE (Public Library of Science ONE). The complete research findings of Boyd and Stephanie K. Drumheller, of the University of Iowa and the University of Tennessee, and Terry A. Gates, of North Carolina State University and the Natural History Museum of Utah, can be accessed at http://dx.plos.org/10.1371/journal.pone.0057605.

A large number of mostly tiny bits of dinosaur bones were recovered in groups at four locations within the Utah park – which paleontologists and geologists know as the Upper Cretaceous (Campanian) Kaiparowits Formation – leading paleontologists to believe that crocodyliforms had fed on baby dinosaurs 1-2 meters in total length.

Evidence shows bite marks on bone joints, as well as breakthrough proof of a crocodyliform tooth still embedded in a dinosaur femur.

The findings are significant because historically dinosaurs have been depicted as the dominant species. “The traditional ideas you see in popular literature are that when little baby dinosaurs are either coming out of a nesting grounds or out somewhere on their own, they are normally having to worry about the theropod dinosaurs, the things like raptors or, on bigger scales, the T. rex. So this kind of adds a new dimension,” Boyd said. “You had your dominant riverine carnivores, the crocodyliforms, attacking these herbivores as well, so they kind of had it coming from all sides."

Based on teeth marks left on bones and the large amounts of fragments left behind, it is believed the crocodyliforms were also diminutive in size, perhaps no more than 2 meters long. A larger species of crocodyliform would have been more likely to gulp down its prey without leaving behind traces of “busted up” bone fragments.

Until now, paleontologists had direct evidence only of “very large crocodyliforms” interacting with “very large dinosaurs.”

“It’s not often that you get events from the fossil record that are action-related,” Boyd explained. “While you generally assume there was probably a lot more interaction going on, we didn’t have any of that preserved in the fossil record yet. This is the first time that we have definitive evidence that you had this kind of partitioning, of your smaller crocodyliforms attacking the smaller herbivorous dinosaurs,” he said, adding that this is only the second published instance of a crocodyliform tooth embedded in any prey animal in the fossil record.

“A lot of times you find material in close association or you can find some feeding marks or traces on the outside of the bone and you can hypothesize that maybe it was a certain animal doing this, but this was only the second time we have really good definitive evidence of a crocodyliform feeding on a prey animal and in this case an ornithischian dinosaur,” Boyd said.

The high concentrations of tiny dinosaur bones led researchers to conclude a type of selection occurred, that crocodyliforms were preferentially feeding on these miniature dinosaurs. “Maybe it was closer to a nesting ground where baby dinosaurs would have been more abundant, and so the smaller crocodyliforms were hanging out there getting a lunch,” Boyd added.

“When we started looking at all the other bones, we starting finding marks that are known to be diagnostic for crocodyliform feeding traces, so all that evidence coming together suddenly started to make sense as to why we were not finding good complete specimens of these little ornithischian dinosaurs,” Boyd explained. “Most of the bites marks are concentrated around the joints, which is where the crocodyliform would tend to bite, and then, when they do their pulling or the death roll that they tend to do, the ends of the bones tend to snap off more often than not in those actions. That’s why we were finding these fragmentary bones.”

In the process of their research, the team discovered through diagnostic cranial material that these baby prey are a new, as yet-to-be-named dinosaur species. Details on this new species will soon be published in another paper.

MEDIA CONTACT
Fran LeFort
Media relations manager
(605) 394-6082
Fran.LeFort@sdsmt.edu

Fran LeFort | EurekAlert!
Further information:
http://www.sdsmt.edu
http://www.sdsmt.edu/News/Mines-research-leads-to-dinosaur-breed-discovery/

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>