Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research helps us understand the incredible forces and oil and gas reserves that lie hidden beneath the Earth’s surface

13.02.2009
It was the geological collision between India and Asia millions of years ago that created one of the world’s most distinctive places: The area around Lake Baikal in Siberia, which contains 20 per cent of the world’s fresh water reserves and a unique display of plant- and wildlife.

That is the conclusion reached by two Danish researchers from the University of Copenhagen, Professor Hans Thybo and PhD Christoffer Nielsen, after many seismic examinations, including blowing up tons of dynamite, and five years work of analysing the data.

In the middle of Siberia lies the 2000km long Baikal Rift Zone, where, over the last 35 million years, a gigantic crack in the Earth’s crust has developed. In the middle of this rift zone lies the world’s deepest lake, Lake Baikal, which is almost 1700m deep and contains 20% of the world’s freshwater. Due to Lake Baikal’s isolated location, far from the world’s oceans the microbial and animal life found here has undergone a unique evolution over the last 30 million years. The Baikal Rift Zone, or fracture zone, is also special because it is located 3000km away from the nearest tectonic plate boundary. Therefore, it has been difficult, until now, to explain the origin of the Baikal Rift Zone using commonly accepted geological premises and methods.

However, two Danish researchers from the University of Copenhagen, Prof. Hans Thybo and Dr. Christoffer Nielsen, in collaboration with Eastern European colleagues, have succeeded in uncovering what happened, and what is still happening, under the surface of one of the most special and distinctive areas on Earth. More than that; the results from the experiment in Siberia have lead to a new understanding of, and model for, the formation of and activity in rift zones, which are found in locations around the globe, including between the continents.

Lots of dynamite
In Siberia the Danish research team lead a seismic experiment known as BEST (Baikal Explosion Seismic Transects) carried out around Lake Baikal. The experiment included setting off of tons of dynamite so the scientists could follow the sound waves from the explosion as they travelled through the ground, using them to determine the structure of the Earth’s crust and the upper mantle and thus gain an understanding of the processes driving the rift zone’s development.

The fieldwork at Lake Baikal was carried out in 2003-2004 with financial support from the Carlsberg Foundation and the Danish Natural Science Research Council and in collaboration with geologists and geophysicists from the Russian Academy of Science’s Siberian departments and the Polish Academy of Science. Since then the scientists have spent 5 years interpreting the huge amount of data they collected and have ended up with sensational seismic results related to the general formation of, and activity in, rift zones around the world.

The sensational results from Siberia now form the basis for a new model for understanding the formation of rift zones on a global plan. The results from Lake Baikal show that the 40-50km wide crack in the Earth’s crust is around 10km deep. All previous models of rift processes have assumed that the bottom of the Earth’s crust would have a corresponding bulge. However to the researchers’ great surprise it turned out that the bottom of the crust is flat across Lake Baikal. The two scientists explain this phenomenon by a greater thinning of the crust than expected but at the same time also by an intrusion of magma (liquid rock from the Earth’s mantle) into the bottom part of the crust layer. The volume of the magma corresponds to the thinning of the crust. The research group has therefore reinterpreted data from a number of other rift zones around the globe, including from the East African rift in Kenya where writer Karen Blixen had her African farm and from an older rift zone in the Ukraine. In both places the researchers see the same phenomenon found in Siberia. This plays an import6ant role for the new results.

Rift zones can divide continents
Rift formation is a fundamental process of plate tectonics, which can, given time, split a continent in two. Up until 60 million years ago, what is currently Europe and North America was one large continent. The northern Atlantic appeared when a rift zone developed between what is now Norway and Greenland. The rifting process continued and ca 55 million years ago a new ocean arose.

Rift zones are also important for oil exploration as many oil rich areas have arisen as a result of rift processes. This is true, for example, of the area around the Central Graben in the North Sea which is a former rift zone whose development halted. The Central Graben is the location where the countries bordering the North Sea obtain most of their oil. It is therefore important to understand the processes that lead to rift formation, as it may give us an opportunity to pump more oil up from underground.

Prof. Hans Thybo | EurekAlert!
Further information:
http://www.geo.ku.dk

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>