Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research finds Greenland glacier melting faster than expected

19.08.2011
A key glacier in Greenland is melting faster than previously expected, according to findings by a team of academics, including Dr Edward Hanna from University of Sheffield.

Dr Hanna, from the University of Sheffield's Department of Geography, was part of a team of researchers that also included Dr Sebastian Mernild from the Los Alamos Laboratory, USA, and Professor Niels Tvis Knudsen from the University of Aarhus, Denmark. The team´s new findings present crucial insight into the effects of climate change.

The researchers found that Greenland's longest-observed glacier, Mittivakkat Glacier, made two consecutive record losses in mass observations for 2010 and 2011. The observations indicate that the total 2011 mass budget loss was 2.45 metres, 0.29 metres higher than the previous observed record loss in 2010. The 2011 value was also significantly above the 16-year average observed loss of 0.97 metres per year.

The 2011 observations further illustrate, even comparing the mass balance value against simulated glacier mass balance values back to 1898, that 2011 is a record-breaking glacier mass loss year.

Mittivakkat Glacier has been surveyed for mass balance and glacier front fluctuations since 1995 and 1931 respectively. In 2011 the glacier terminus has retreated about 22 metres, 12 metres less than the observed record of 34 metres in 2010, and approximately 1,300 metres in total since the first photographic observations in 1931.

These observations suggest that recent Mittivakkat Glacier mass losses, which have been driven largely by higher surface temperatures and low precipitation, are representative of the broader region, which includes many hundreds of local glaciers in Greenland. Observations of other glaciers in Greenland show terminus retreats comparable to that of Mittivakkat Glacier. These glaciers are similar to the Mittivakkat Glacier in size and elevation range.

Local glacier observations in Greenland are rare, and the Mittivakkat Glacier is the only glacier in Greenland for which long-term observations of both the surface mass balance and glacier front fluctuations exist.

Since 1995, the general trend for the Mittivakkat Glacier has been toward higher temperatures, less snowfall, and a more negative glacier mass balance, with record mass loss in 2011. In 14 of the last 16 years, the Mittivakkat Glacier had a negative surface mass balance.

Principal Investigator on this summer's fieldwork, Dr Edward Hanna, commented: "Our fieldwork results are a key indication of the rapid changes now being seen in and around Greenland, which are evident not just on this glacier but also on many surrounding small glaciers. It's clear that this is now a very dynamic environment in terms of its response and mass wastage to ongoing climate change.

"The retreat of these small glaciers also makes the nearby Greenland Ice Sheet more vulnerable to further summer warming which is likely to occur. There could also be an effect on North Atlantic Ocean circulation and weather patterns through melting so much extra ice. An extended glacier observation programme in east Greenland for the next few years is clearly needed to improve understanding of the links between climate change and response of the glaciers in this important region."

The project marks an important practical collaborative venture of both the joint research centre of the Universities of Sheffield and Aarhus, and Los Alamos, with funding support provided by the European Community´s Seventh Framework Programme.

Notes for Editors:
The findings include updated results from the following research paper:
Mernild, S.H., N. T. Knudsen, W. H. Lipscomb, J. C. Yde, J. K. Malmros, B. Hasholt, and B. H. Jakobsen (2011) Increasing mass loss from Greenland's Mittivakkat Gletscher. The Cryosphere, 5, 341-348.

The research was carried out with funding support provided by the European Community's Seventh Framework Programme under grant agreement No. 262693.

To find out more about the University of Sheffield´s Department of Geography, visit: Department of Geography

For further information please contact: Amy Stone, Media Relations Officer, on 0114 2221046 or email

a.f.stone@sheffield.ac.uk

Amy Stone | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>