Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research is getting closer to understanding critical nucleus in haze formation

17.06.2010
Haze, scientifically known as atmospheric aerosols - microscopic particles suspended in the Earth's atmosphere - represents a major environmental problem because it degrades visibility, affects human health and influences the climate. Despite its profound impacts, how the haze is formed is not fully understood, says a Texas A&M University professor of atmospheric sciences and chemistry who has studied air chemistry for more than 20 years.

Professor Renyi Zhang published his work in the June 11 issue of Science magazine, summarizing recent findings and new research directions that could pave the way for a better understanding of aerosol formation.

"Aerosols, also referred to as haze, influence climate by absorbing and reflecting solar radiation and modifying cloud formation," he explains. "A better understanding of how aerosols form in the atmosphere will greatly improve climate models.

"But, formation of aerosols in the atmosphere is not fully understood, particularly at the molecular level, creating one of the largest sources of uncertainty in climate predictions," he adds.

For aerosols to form, the bonding particles must cross an energy threshold, which the scientists call nucleation barrier. Once the barrier is crossed, aerosol formation can happen spontaneously, he notes.

The interaction between organic acids and sulfuric acid can facilitate the crossing of the barrier by creating a critical nucleus, the Texas A&M professor says in the Science article.

Large amounts of organic gases are emitted to the atmosphere by plants, industry and automobiles and form organic acids; sulfur dioxide, on the other hand, are produced by human activities, such as burning coals, and then form sulfuric acid.

To better understand aerosol formation, scientists need to predict the nucleation rate based on knowledge of the composition of the critical nucleus, Zhang explains.

This knowledge can be obtained by combining theoretical approaches with "measurements of the size and chemical composition of freshly nucleated nanoparticles in the laboratory and in the field," Zhang notes.

Understanding and eventually controlling aerosol formation may help the environment, benefit human health and improve climate prediction, he says.

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu; or Miao Jingang, News & Information Services, at miaojingang@tamu.edu or Renyi Zhang at (979) 845-7656 or zhang@ariel.met.tamu.edu.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Sun's impact on climate change quantified for first time
27.03.2017 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>