Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research is getting closer to understanding critical nucleus in haze formation

17.06.2010
Haze, scientifically known as atmospheric aerosols - microscopic particles suspended in the Earth's atmosphere - represents a major environmental problem because it degrades visibility, affects human health and influences the climate. Despite its profound impacts, how the haze is formed is not fully understood, says a Texas A&M University professor of atmospheric sciences and chemistry who has studied air chemistry for more than 20 years.

Professor Renyi Zhang published his work in the June 11 issue of Science magazine, summarizing recent findings and new research directions that could pave the way for a better understanding of aerosol formation.

"Aerosols, also referred to as haze, influence climate by absorbing and reflecting solar radiation and modifying cloud formation," he explains. "A better understanding of how aerosols form in the atmosphere will greatly improve climate models.

"But, formation of aerosols in the atmosphere is not fully understood, particularly at the molecular level, creating one of the largest sources of uncertainty in climate predictions," he adds.

For aerosols to form, the bonding particles must cross an energy threshold, which the scientists call nucleation barrier. Once the barrier is crossed, aerosol formation can happen spontaneously, he notes.

The interaction between organic acids and sulfuric acid can facilitate the crossing of the barrier by creating a critical nucleus, the Texas A&M professor says in the Science article.

Large amounts of organic gases are emitted to the atmosphere by plants, industry and automobiles and form organic acids; sulfur dioxide, on the other hand, are produced by human activities, such as burning coals, and then form sulfuric acid.

To better understand aerosol formation, scientists need to predict the nucleation rate based on knowledge of the composition of the critical nucleus, Zhang explains.

This knowledge can be obtained by combining theoretical approaches with "measurements of the size and chemical composition of freshly nucleated nanoparticles in the laboratory and in the field," Zhang notes.

Understanding and eventually controlling aerosol formation may help the environment, benefit human health and improve climate prediction, he says.

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu; or Miao Jingang, News & Information Services, at miaojingang@tamu.edu or Renyi Zhang at (979) 845-7656 or zhang@ariel.met.tamu.edu.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>