Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research challenges models of sea level change during ice-age cycles

12.02.2010
Theories about the rates of ice accumulation and melting during the Quaternary Period -- the time interval ranging from 2.6 million years ago to the present -- may need to be revised, thanks to research findings published by a University of Iowa researcher and his colleagues in the Feb. 12 issue of the journal Science.

Jeffrey Dorale, assistant professor of geoscience in the UI College of Liberal Arts and Sciences, writes that global sea level and Earth's climate are closely linked. Data he and colleagues collected on speleothem encrustations, a type of mineral deposit, in coastal caves on the Mediterranean island of Mallorca indicate that sea level was about one meter above present-day levels around 81,000 years ago. The finding challenges other data that indicate sea level was as low as 30 meters -- the ice equivalent of four Greenland ice sheets -- below present-day levels.

He said the sea level high stand of 81,000 years ago was preceded by rapid ice melting, on the order of 20 meters of sea level change per thousand years and the sea level drop following the high water mark, accompanied by ice formation, was equally rapid.

"Twenty meters per thousand years equates to one meter of sea level change in a 50-year period," Dorale said. "Today, over one-third of the world's population lives within 60 miles of the coastline. Many of these areas are low-lying and would be significantly altered -- devastated -- by a meter of sea level rise. Our findings demonstrate that changes of this magnitude can happen naturally on the timescale of a human lifetime. Sea level change is a very big deal."

Dorale also noted that although their findings disagree with some sea level estimates, such as those from Barbados and New Guinea that come from ancient coral reefs, they are in agreement with data gathered from other sites such as the Bahamas, the U.S. Atlantic coastal plain, Bermuda, the Cayman Islands and California.

"There has been a long-standing debate on this issue, but our data is pretty robust," he said. "The key to our research is two-fold. First, the speleothem approach we employed is novel and extremely precise compared to other methods of sea-level reconstruction. Second, Mallorca appears to be particularly well suited to the task, because neither tectonics nor isostasy -- geological forces of crustal motion -- over-complicate the record. It's really close to the ideal scenario. It's also a heck of a nice place to do fieldwork."

Dorale's colleagues include Bogdan Onac of the University of South Florida, Tampa; Joan Fornos, Joaquin Gines and Angel Gines, all of the Universitat de les Illes Balears, Mallorca, Spain; Paola Tuccimei of the University of Rome III, Italy; and UI associate professor of geoscience David Peate.

The research was supported by the National Science Foundation in a grant to Dorale and Onac.

STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Iowa City, Iowa 52242-2500

MEDIA CONTACT: Gary Galluzzo, writer, 319-384-0009, gary-galluzzo@uiowa.edu

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>