Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Analyzes Flow Structure Under Breaking Waves

20.02.2009
The study of wave structure and turbulence helps provide valuable information to predict how often waves are generated, the velocity of them, how long they last and their temporal extent.

In landlocked South Dakota, hundreds of miles and 1,600 feet of elevation from the nearest ocean, South Dakota State University professor Francis Ting studies the structure of breaking waves like those that pound the world’s coastlines.

It’s not as odd as it sounds, given the fact that Ting worked previously as a postdoctoral research fellow at the University of Delaware Center for Applied Coastal Research.

“You see this wave breaking at the beach, and you just fall in love with it,” Ting said.

South Dakota offers few opportunities to study breaking waves at the beach, so Ting makes his own in the lab. He uses a 92-foot flume in the SDSU College of Engineering Fluid Mechanics Laboratory. The flume is a Plexiglas tank equipped with a computer-controlled wave maker. A measurement system consisting of a laser and two cameras captures the fluid motion produced by the waves as they break on a sloping bottom.

“A plane slope is the first step toward mimicking a beach in nature, although in this case it doesn’t have sediment,” Ting said. “That makes it easier to study the motion of the fluid without worrying about the sediment-transport aspects of it.”

Just as stormy conditions in the atmosphere sometimes produce the energetic local structures known as tornadoes, Ting said, breaking waves, too, have structure.

“The turbulence generated by the breaking waves has structure to it like a tornado in a storm,” Ting said. “The objective of the research is to identify the structures, what do they look like, how strong is the velocity, how big are these structures, and how long do they last — their temporal extent. Currently there’s very limited information on what is the flow structure produced as the wave breaks.”

With the help of a grant of $214,628 from the National Science Foundation, Ting, in SDSU’s Department of Civil and Environmental Engineering, has carried out extensive studies to try to answer those questions. The first step was to study a single wave.

“We found that the dominant structure consists of a downburst of turbulence. It’s quite logical. The wave impinges on the water surface as it breaks and then the jet of the breaking wave continues to move downward toward the bottom like someone pouring water into a pond.”

However, the downburst doesn’t just stay in the form of a jet of fluid but bends and rotates and creates vortices. Each downburst consisted of a core of downward flow accompanied by two spiraling flows, or vortices, that rotate in opposite directions to each other.

From measurements Ting and his students were able to identify the spacing of these structures and determine approximately how often they are generated.

From a single wave they moved on to study a periodic wave that consists of many identical waves breaking one after another. Ting said it’s important to study a wave train because it produces two effects that don’t occur with a single wave — the interaction of structures from successive waves, and the current known as the undertow. That current sometimes forces the flow structures within waves to change positions, Ting said.

Ting’s study found there are important differences in how two different types of breaking waves responded to the undertow. In plunging waves, like those with the curled crests that surfers ride, downbursts could overcome the effect of the undertow and carry turbulence onshore.

But in spilling waves — those in which the wave crest becomes unstable and water begins to fall down the front of the wave like a landslide — downbursts were quickly carried offshore by the undertow.

Ting said these findings are consistent with what coastal engineers have observed: that plunging waves tend to build up beaches, while spilling waves tend to tear them down.

“The detailed mechanism still has to be determined. It hasn’t been determined yet,” Ting said.

Ting said the logical next step would be to carry out similar experiments that include sediment to determine exactly how different types of breaking waves transport sediment. The work could lead to tools — in this case, computer models — that would help civil engineers and coastal managers better understand the different scenarios in which waves breaking on beaches erode or deposit sediments.

Ting needs additional instruments that can measure sediment transport before he can carry out that work. He’s pursuing funding to get that equipment and carry out those experiments.

Ironically, Ting is building South Dakota State University’s reputation in the meantime as the source of some important research that could find applications such as protecting beachfront property — not exactly the sort of thing for which South Dakota scientists are best known.

Ting’s lab was established with funding from the National Science Foundation, the Office of Naval Research, and South Dakota EPSCoR, the Experimental Program to Stimulate Competitive Research.

An oral presentation and computer animations of his laboratory measurements can be viewed at

http://sdces.sdstate.edu/ces_website/video/Ting-BW/Ting-BW.html

Jeanne Jones Manzer | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>