Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dam the Red Sea

06.12.2007
Damming the Red Sea could solve the growing energy demands of millions of people in the Middle East and alleviate some of the region's tensions pertaining to oil supplies through hydroelectric power. Equally, such a massive engineering project may cause untold ecological harm and displace countless people from their homes.

In the Inderscience publication International Journal of Global Environmental Issues, Roelof Dirk Schuiling of Utrecht University in The Netherlands and his colleagues discuss the costs and benefits of one of the potentially most ambitious engineering projects ever.

Present technology allows us to shift and shape the earth on a relatively large scale and to control lakes and reservoirs for hydroelectric power generation. In the near future, however, it might be possible to build dams large enough to separate a body of water as large as the Red Sea, from the world oceans. A similar macro-scale engineering project is already planned for the Strait of Hormuz at the entrance of the Persian Gulf. This seawater barrier will exploit the evaporative cycle and influx of seawater to generate vast quantities of electricity.

Geochemical engineer Schuiling suggests that a dam Bab-al-Mandab could be used to stem the inflow of seawater into the highly evaporative Red Sea with the potential of generating 50 gigawatts of power. By comparison, the Drax group of coal-fired power stations in the North of England has a maximum capacity of less than 4 gigawatts and the Palo Verde nuclear power plant, the largest nuclear station in the US has an output of 3.2 gigawatts. The scale of the Bab-al-Mandab dam project dwarves these facilities significantly in terms of capacity.

"Such a project will dramatically affect the region’s economy, political situation and ecology, and their effects may be felt well beyond the physical and political limits of the project," says Schuiling.

Schuiling and his colleagues point out that the cost and timescales involved in creating such a hydroelectric facility are way beyond normal economical considerations. It is inevitable that such a macro-engineering project will cause massive devastation of existing ecologies. However, it will also provide enormous reductions in greenhouse gas emissions as well as offering a viable, sustainable alternative to fossil fuels for future generations. The ethical and environmental dilemmas are on an international scale, while the impact on ecology, tourism, fisheries, transport and other areas could have effects globally.

The researchers point out that the precautionary principle cannot be applied in making a decision regarding the damming of the Red Sea. "If the countries around the Red Sea decide in favour of the macro-project, it is their responsibility to limit the negative consequences as much as possible," they conclude.

Jim Corlett | alfa
Further information:
http://www.geo.uu.nl
http://www.inderscience.com

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>