Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research discredits a US$100 billion 'fix' to global warming

Scientists have revealed an important discovery that raises doubts concerning the viability of plans to fertilize the ocean to solve global warming, a projected US$100 billion venture.

Research performed at Stanford and Oregon State Universities, published in the Journal of Geophysical Research, suggests that ocean fertilization may not be an effective method of reducing carbon dioxide in the atmosphere, a major contributor to global warming. Ocean fertilization, the process of adding iron or other nutrients to the ocean to cause large algal blooms, has been proposed as a possible solution to global warming because the growing algae absorb carbon dioxide as they grow.

However, this process, which is analogous to adding fertilizer to a lawn to help the grass grow, only reduces carbon dioxide in the atmosphere if the carbon incorporated into the algae sinks to deeper waters. This process, which scientists call the “Biological Pump”, has been thought to be dependent on the abundance of algae in the top layers of the ocean. The more algae in a bloom, the more carbon is transported, or “pumped”, from the atmosphere to the deep ocean.

To test this theory, researchers compared the abundance of algae in the surface waters of the world’s oceans with the amount of carbon actually sinking to deep water. They found clear seasonal patterns in both algal abundance and carbon sinking rates. However, the relationship between the two was surprising: less carbon was transported to deep water during a summertime bloom than during the rest of the year. This analysis has never been done before and required designing specialized mathematical algorithms.

“By jumping a mathematical hurdle we found a new globally synchronous signal,” said Dr. Lutz.

“This discovery is very surprising”, said lead author Dr. Michael Lutz, now at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science. “If, during natural plankton blooms, less carbon actually sinks to deep water than during the rest of the year, then it suggests that the Biological Pump leaks. More material is recycled in shallow water and less sinks to depth, which makes sense if you consider how this ecosystem has evolved in a way to minimize loss”, said Lutz. “Ocean fertilization schemes, which resemble an artificial summer, may not remove as much carbon dioxide from the atmosphere as has been suggested because they ignore the natural processes revealed by this research”.

This study closely follows a September Ocean Iron Fertilization symposium at the Woods Hole Oceanographic Institution (WHOI) attended by leading scientists, international lawyers, policy makers, and concerned representatives from government, business, academia and environmental organizations. Topics discussed included potential environmental dangers, economic implications, and the uncertain effectiveness of ocean fertilization. To date none of the major ocean fertilization experiments have verified that a significant amount of deep ocean carbon sequestration occurs. Some scientists have suggested that verification may require more massive and more permanent experiments. Together with commercial operators they plan to go ahead with large-scale and more permanent ocean fertilization experiments and note that potential negative environmental consequences must be balanced against the harm expected due to ignoring climate change.

During the Ocean Iron Fertilization meeting Dr. Hauke Kite-Powell, of the Marine Policy Center at WHOI, estimated the possible future value of ocean fertilization at US$100 billion of the emerging international carbon trading market, which has the goal of mitigating global warming. However, according to Professor Rosemary Rayfuse, an expert in International Law and the Law of the Sea at the University of New South Wales, Australia, who also attended the Woods Hole meeting, ocean fertilization projects are not currently approved under any carbon credit regulatory scheme and the sale of offsets or credits from ocean fertilization on the unregulated voluntary markets is basically nothing short of fraudulent.

‘There are too many scientific uncertainties relating both to the efficacy of ocean fertilization and its possible environmental side effects that need to be resolved before even larger experiments should be considered, let alone the process commercialized,’ Rayfuse says. ‘All States have an obligation to protect and preserve the marine environment and to ensure that all activities carried out under their jurisdiction and control, including marine scientific research and commercial ocean fertilization activities do not cause pollution. Ocean fertilization is ‘dumping’ which is essentially prohibited under the law of the sea. There is no point trying to ameliorate the effects of climate change by destroying the oceans – the very cradle of life on earth. Simply doing more and bigger of that which has already been demonstrated to be ineffective and potentially more harmful than good is counter-intuitive at best.’

Indeed, the global study of Dr. Lutz and colleagues suggests that greatly enhanced carbon sequestration should not be expected no matter the location or duration of proposed large-scale ocean fertilization experiments.

According to Dr. Lutz “The limited duration of previous ocean fertilization experiments may not be why carbon sequestration wasn’t found during those artificial blooms. This apparent puzzle could actually reflect how marine ecosystems naturally handle blooms and agrees with our findings. A bloom is like ringing the marine ecosystem dinner bell. The microbial and food web dinner guests appear and consume most of the fresh algal food.”

“Our study highlights the need to understand natural ecosystem processes, especially in a world where change is occurring so rapidly,” concluded Dr. Lutz.

The findings of Dr. Lutz and colleagues coincide with and affirm last month’s decision of the London Convention (the International Maritime Organization body that oversees the dumping of wastes and other matter at sea) to regulate controversial commercial ocean fertilization schemes. This gathering of international maritime parties advised that such schemes are currently not scientifically justified.

Concerns over the uncertain environmental impact of ocean fertilization have been voiced by international environmental organizations, including the World Wildlife Federation, Rising Tide, ETC Group, and Greenpeace International. "The London Convention has now endorsed scientific concerns about impacts of large-scale ocean fertilization and, on that basis, taken the clear view that such operations should not proceed at this time", said Dr. David Santillo from Greenpeace International's Science Unit based at the University of Exeter, UK. "Greenpeace wants Parties to act accordingly to prevent reckless carbon profiteers from continuing with their schemes and potentially threatening the oceans.”

Strategies to sequester atmospheric carbon dioxide, including the enhancement of biological sinks through processes such as ocean fertilization, will be considered by international governmental representatives during the thirteenth United Nations Framework Convention on Climate Change conference in Bali this month.

Barbra Gonzalez | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>