Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research discredits a US$100 billion 'fix' to global warming

05.12.2007
Scientists have revealed an important discovery that raises doubts concerning the viability of plans to fertilize the ocean to solve global warming, a projected US$100 billion venture.

Research performed at Stanford and Oregon State Universities, published in the Journal of Geophysical Research, suggests that ocean fertilization may not be an effective method of reducing carbon dioxide in the atmosphere, a major contributor to global warming. Ocean fertilization, the process of adding iron or other nutrients to the ocean to cause large algal blooms, has been proposed as a possible solution to global warming because the growing algae absorb carbon dioxide as they grow.

However, this process, which is analogous to adding fertilizer to a lawn to help the grass grow, only reduces carbon dioxide in the atmosphere if the carbon incorporated into the algae sinks to deeper waters. This process, which scientists call the “Biological Pump”, has been thought to be dependent on the abundance of algae in the top layers of the ocean. The more algae in a bloom, the more carbon is transported, or “pumped”, from the atmosphere to the deep ocean.

To test this theory, researchers compared the abundance of algae in the surface waters of the world’s oceans with the amount of carbon actually sinking to deep water. They found clear seasonal patterns in both algal abundance and carbon sinking rates. However, the relationship between the two was surprising: less carbon was transported to deep water during a summertime bloom than during the rest of the year. This analysis has never been done before and required designing specialized mathematical algorithms.

“By jumping a mathematical hurdle we found a new globally synchronous signal,” said Dr. Lutz.

“This discovery is very surprising”, said lead author Dr. Michael Lutz, now at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science. “If, during natural plankton blooms, less carbon actually sinks to deep water than during the rest of the year, then it suggests that the Biological Pump leaks. More material is recycled in shallow water and less sinks to depth, which makes sense if you consider how this ecosystem has evolved in a way to minimize loss”, said Lutz. “Ocean fertilization schemes, which resemble an artificial summer, may not remove as much carbon dioxide from the atmosphere as has been suggested because they ignore the natural processes revealed by this research”.

This study closely follows a September Ocean Iron Fertilization symposium at the Woods Hole Oceanographic Institution (WHOI) attended by leading scientists, international lawyers, policy makers, and concerned representatives from government, business, academia and environmental organizations. Topics discussed included potential environmental dangers, economic implications, and the uncertain effectiveness of ocean fertilization. To date none of the major ocean fertilization experiments have verified that a significant amount of deep ocean carbon sequestration occurs. Some scientists have suggested that verification may require more massive and more permanent experiments. Together with commercial operators they plan to go ahead with large-scale and more permanent ocean fertilization experiments and note that potential negative environmental consequences must be balanced against the harm expected due to ignoring climate change.

During the Ocean Iron Fertilization meeting Dr. Hauke Kite-Powell, of the Marine Policy Center at WHOI, estimated the possible future value of ocean fertilization at US$100 billion of the emerging international carbon trading market, which has the goal of mitigating global warming. However, according to Professor Rosemary Rayfuse, an expert in International Law and the Law of the Sea at the University of New South Wales, Australia, who also attended the Woods Hole meeting, ocean fertilization projects are not currently approved under any carbon credit regulatory scheme and the sale of offsets or credits from ocean fertilization on the unregulated voluntary markets is basically nothing short of fraudulent.

‘There are too many scientific uncertainties relating both to the efficacy of ocean fertilization and its possible environmental side effects that need to be resolved before even larger experiments should be considered, let alone the process commercialized,’ Rayfuse says. ‘All States have an obligation to protect and preserve the marine environment and to ensure that all activities carried out under their jurisdiction and control, including marine scientific research and commercial ocean fertilization activities do not cause pollution. Ocean fertilization is ‘dumping’ which is essentially prohibited under the law of the sea. There is no point trying to ameliorate the effects of climate change by destroying the oceans – the very cradle of life on earth. Simply doing more and bigger of that which has already been demonstrated to be ineffective and potentially more harmful than good is counter-intuitive at best.’

Indeed, the global study of Dr. Lutz and colleagues suggests that greatly enhanced carbon sequestration should not be expected no matter the location or duration of proposed large-scale ocean fertilization experiments.

According to Dr. Lutz “The limited duration of previous ocean fertilization experiments may not be why carbon sequestration wasn’t found during those artificial blooms. This apparent puzzle could actually reflect how marine ecosystems naturally handle blooms and agrees with our findings. A bloom is like ringing the marine ecosystem dinner bell. The microbial and food web dinner guests appear and consume most of the fresh algal food.”

“Our study highlights the need to understand natural ecosystem processes, especially in a world where change is occurring so rapidly,” concluded Dr. Lutz.

The findings of Dr. Lutz and colleagues coincide with and affirm last month’s decision of the London Convention (the International Maritime Organization body that oversees the dumping of wastes and other matter at sea) to regulate controversial commercial ocean fertilization schemes. This gathering of international maritime parties advised that such schemes are currently not scientifically justified.

Concerns over the uncertain environmental impact of ocean fertilization have been voiced by international environmental organizations, including the World Wildlife Federation, Rising Tide, ETC Group, and Greenpeace International. "The London Convention has now endorsed scientific concerns about impacts of large-scale ocean fertilization and, on that basis, taken the clear view that such operations should not proceed at this time", said Dr. David Santillo from Greenpeace International's Science Unit based at the University of Exeter, UK. "Greenpeace wants Parties to act accordingly to prevent reckless carbon profiteers from continuing with their schemes and potentially threatening the oceans.”

Strategies to sequester atmospheric carbon dioxide, including the enhancement of biological sinks through processes such as ocean fertilization, will be considered by international governmental representatives during the thirteenth United Nations Framework Convention on Climate Change conference in Bali this month.

Barbra Gonzalez | alfa
Further information:
http://www.rsmas.miami.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>