Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the origin of rubies and sapphires to improve prospecting strategies

04.12.2007
Ruby and sapphire formation occurs deep in the lithosphere in a regime of extremely high pressures and temperatures. Although it is known that most of these gem stones, classified as corundums, were torn from the Earth’s crust by a magma generated in the mantle before being transported towards the surface, their exact origin is still uncertain.

Thanks to a pooling of results from several international research teams (1), a databank for compiling the oxygen isotope concentration ratios, 18O/16O, for the corundums of all basaltic-type placers (2) is now available. This parameter contributes many indicators of the provenance of sapphires and rubies, but researchers still needed access to a primary deposit in order to identify the origin of these precious stones with absolute certainty.

This last piece of the puzzle was recently put together by a joint research team from the IRD, the CNRS and the University of Antananarivo who discovered such a deposit of rubies in Madagascar. Combination of this new field data with the oxygen isotope composition gave the geologists the possibility to determine exactly the origin of all the rubies and sapphires found in alkaline basalts. This information could enable geologists locally to trace the origin back up to the parent-rock and thus increase the possibilities of exploitation of these gem stone deposits.

Rubies and sapphires belong to the corundum mineralogical family. Corundums exist in a wide range of colours. They consist of aluminium oxide crystals containing impurities which dote them with their various tints: titanium and iron for the blue of the sapphire, chromium and vanadium for the red of rubies. Humans have been captivated by the beauty of these precious stones for many centuries, yet the original environment of formation of some of them is still a matter for debate. This is especially the case for sapphires found in alkaline basalts, volcanic rocks from which most of the world’s commercialized blue sapphires are extracted. It is the extremely high pressures and temperatures prevailing several tens of kilometres deep in the Earth’s crust which generated corundums. Rising magma then brought them up to the surface where the crystals accumulated following the erosion of the surrounding protective rock.

Prospectors then find these stones in placers which correspond to sedimentary deposits. That explains why it is extremely difficult to determine the origin of these stones from secondary deposits.

Geologists have nevertheless been attempting for several years to go back up to the primary genesis of corundums, basing their search particularly on the isotope composition of the oxygen (18O/16O) trapped inside these crystals. Compilation of the results of several international teams enabled them to establish a databank of isotopic values for oxygen for the whole of the world’s deposits of sapphires and rubies found in alkaline basalts. Yet although this parameter enables scientists to make progress towards revealing the genesis of these stones, geological study of a primary deposit is crucial for identifying unambiguously their provenance. In Madagascar, researchers at the University of Antananarivo, from the IRD and the CNRS recently gained access to a well preserved part of ruby bearing rock brought up by magma of mantle origin.

This discovery represents the link that geologists needed in order to confirm the nature of the host-rocks of rubies, and also of sapphires, found in the alkaline basalts. The study of samples taken from the site were successful in indicating the conditions in which these rubies were formed: extremely high pressure of 20 kbar and a temperature of around 1100°C, pointing to a depth of 60 km, were necessary for these precious stones to generate. By combining this new field data with oxygen isotope compositions determined for 150 sapphires from basaltic placers originating from 13 different countries, the geologists succeeded in identifying the precise source of all rubies and sapphires found in alkaline basalts.

In the great majority of cases, the cross-referencing and combining of all these results led to confirmation of the magmatic origin for the sapphires found in these rocks. This result corroborates those from previous studies focusing on the chemical composition of various glasses trapped by these sapphires and which are typical of magmatic environments. Moreover, the existence of sapphires bearing syenite xenoliths (3) confirmed that these corundums were crystallized from a magma whose source was the mantle.

An unequivocal metamorphic origin was also determined for 20 % of the sapphires and for all the rubies of basaltic origin, 62 different samples coming from deposits in Asia, Australia and Madagascar. In this second scenario, the parent-rock no longer originated from the mantle but from the deep continental crust in the transition zone between the crust and the mantle. This type of primary deposit is encountered in high pressure and temperature environments which form sizeable outcrops in the ancient basements as in Madagascar.

Understanding the genesis of the rubies and sapphires found in sedimentary deposits could therefore help in the determination of their geological origin and thus increase the possibilities for mining these gemstones. Downstream of the extraction stage, the process could also be envisaged as a method for controlling the trading circuits. However, unlike emeralds, for which this type of study comparing field analyses and isotopic measurements provides the elements for identifying both the geological origin and the geographic location of the primary deposit, sapphires can reveal only their geological origin. A peculiarity which will probably leave part of the mystery cloaking these fascinating stones still intact for many years to come.

Grégory Fléchet - IRD

(1) This research was conducted by the ‘Laboratoire des Mécanismes de Transfert en Géologie (LMTG)’ of Toulouse and the ‘Centre de Recherches Pétrographiques et Géochimiques (CRPG)’ in Nancy jointly with the Scottish Universities Environmental Research Centre of Glasgow (Scotland), the Institut Gubelin in Switzerland, the Pakistan Geological Service and the universities of Hanoi (Viet-Nam) and of Antananarivo (Madagascar)
(2) Secondary deposits of precious stones formed by the accumulation of fluvial or marine alluvium.

(3) Syenite is a rock composed of more than 60% of potassium feldspars

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2007/fas278.pdf

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>