Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recipe for a storm: The ingredients for more powerful Atlantic hurricanes

03.12.2007
As the world warms, the interaction between the Atlantic Ocean and atmosphere may be the recipe for stronger, more frequent hurricanes.

niversity of Wisconsin-Madison scientists have found that the Atlantic organizes the ingredients for a powerful hurricane season to create a situation where either everything is conducive to hurricane activity or nothing is-potentially making the Atlantic more vulnerable to climate change than the world's other hurricane hot spots.

After the 2004 and 2005 hurricane seasons, many worry what Atlantic hurricane seasons will look like in a warmer world. Evidence indicates that higher ocean temperatures add a lot of fuel to these devastating storms. In a paper published today in the "Bulletin of the American Meteorological Society," co-authors Jim Kossin and Dan Vimont caution against only looking at one piece of the puzzle. "Sea surface temperature is a bit overrated," says Kossin, an atmospheric scientist at UW-Madison's Cooperative Institute of Meteorological Satellite Studies. "It's part of a larger pattern."

Kossin and Vimont, a professor in the Department of Atmospheric and Oceanic Sciences, noticed that warmer water is just one part of a larger pattern indicating that the conditions are right for more frequent, stronger hurricanes in the Atlantic. The atmosphere reacts to ocean conditions and the ocean reacts to the atmospheric situation, creating a distinct circulation pattern known as the Atlantic Meridional Mode (AMM). The AMM unifies the connections among the factors that influence hurricanes such as ocean temperature, characteristics of the wind, and moisture in the atmosphere.

Finding that a basin-wide circulation pattern drives Atlantic hurricane activity helps explain evidence of significant differences in long-term hurricane trends among the world's basins. In a study published last February, Kossin and his co-authors created a more consistent record of hurricane data that accounted for the significant improvement in storm detection that followed the advent of weather satellites. An analysis of this recalibrated data showed that hurricanes have become stronger and more frequent in the Atlantic Ocean over the last two decades. The increasing trend, however, is harder to identify in the world's other oceans.

Kossin and Vimont wanted to determine why long-term trends in the Atlantic looked different from those in other basins, particularly in the Pacific, where the majority of the world's hurricane activity occurs. "The AMM helps us understand why hurricanes in the Atlantic react differently to climate changes than those in the Pacific," Vimont says. According to Vimont, the other oceanic basins have their own modes of variability.

Understanding how factors vary together provides a new framework from which to consider climate change and hurricanes. "Our study broadens the interpretation of the hurricane-climate relationship," Vimont says.

Looking at the larger set of varying conditions provides a more coherent understanding of how climate change affects hurricane activity. In the Atlantic, warmer water indicates that other conditions are also ideal for hurricane development. However, in the Pacific, a hurricane-friendly environment goes along with cooler ocean temperatures in the area where the storms spend their lives. The inconsistent relationship with sea surface temperature leads Vimont and Kossin to conclude that the connection between hurricane activity and climate variability hinges on more than just changes in ocean temperatures.

"You can never isolate one factor on this planet," Kossin says. "Everything is interrelated."

Depending on the other conditions hurricanes care about, warmer oceans can mean different outcomes. Concentrating on how the atmosphere and the ocean work together helps hurricane researchers see the bigger picture. Because higher sea surface temperatures in the Atlantic act in concert with the AMM, Vimont and Kossin suggest that Atlantic hurricanes will be more sensitive to climate changes than storms in other ocean basins.

In addition to helping researchers understand and predict the effects of climate change on hurricane activity, Vimont and Kossin can forecast the AMM up to a year in advance. If the AMM is positive, all the conditions are right for hurricane development. If it is negative, those living on the coasts can generally expect a quieter hurricane season. Vimont and Kossin plan to further develop their AMM forecasts for use during the hurricane season. The duo also hopes to continue to research the physical relationships that constitute the AMM as well as how future climate change will affect these modes of climate variability.

Jim Kossin | EurekAlert!
Further information:
http://www.ssec.wisc.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>