Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Cores May Give Clues On Climate Change

06.05.2002


Core samples taken from far below the ocean floor are helping a University of Edinburgh geologist to form a picture of dramatic climate changes which took place 30 to 40 million years ago. Dr Bridget Wade is part of an international team of scientists studying climate shifts between the Eocene period – the warmest cycle in the last 65 million years – and the cooler Oligocene period, which saw the first major build-up of Antarctic ice. The study could shed new light on present climate trends as the Eocene climatic regime appears to have established itself rapidly – at a rate comparable to modern global warming – before ending almost as abruptly.



The team of 28 scientists from eight nations is analysing drill cores taken from eight sites near the equator in the Pacific Ocean in October. The cores are the first to be recovered which contain continuous geological records of the Eocene and Oligocene periods. Dr Wade is studying sediment which records the transition 33.7million years ago from the Eocene period – when London was covered by tropical rainforest and crocodiles swam in the River Thames – to the Oligocene period, a time about which scientists know relatively little.

The start of the Oligocene period coincides not only with huge climate shifts, but also with marked changes in the Earth’s oceanography. Scientists detect a shift towards patterns more like those today where wind systems from the northern and southern hemispheres come together and stir the ocean near the equator so that deep, nutrient-rich waters come to the surface and support a diverse, thriving community of plankton. In the Eocene period, the oceanic biological system had been broad and diffuse with low plankton productivity.


Dr Wade is completing a detailed study of plankton fossils, which will help to build the most accurate picture so far of how the Oligocene climate changed over time. And, because the core sample holds a unique, unbroken geological record over a 10m year period, it can help the scientists to date Oligocene rocks more accurately than ever before. The current margin for error is 1m years, but the new study could help to cut that figure to about 50,000 years.

Dr Wade said: “It’s exciting being part of an international team working on a single grand problem. The Oligocene period remains something of a mystery because, until now, there have been no good cores. This study will help us create a more accurate picture of that time. People used to think big climate changes had only occurred during the last million years, but research suggests that dramatic change has always taken place as a result of natural processes.”

Ronald Kerr | alphagalileo

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>