Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Cores May Give Clues On Climate Change

06.05.2002


Core samples taken from far below the ocean floor are helping a University of Edinburgh geologist to form a picture of dramatic climate changes which took place 30 to 40 million years ago. Dr Bridget Wade is part of an international team of scientists studying climate shifts between the Eocene period – the warmest cycle in the last 65 million years – and the cooler Oligocene period, which saw the first major build-up of Antarctic ice. The study could shed new light on present climate trends as the Eocene climatic regime appears to have established itself rapidly – at a rate comparable to modern global warming – before ending almost as abruptly.



The team of 28 scientists from eight nations is analysing drill cores taken from eight sites near the equator in the Pacific Ocean in October. The cores are the first to be recovered which contain continuous geological records of the Eocene and Oligocene periods. Dr Wade is studying sediment which records the transition 33.7million years ago from the Eocene period – when London was covered by tropical rainforest and crocodiles swam in the River Thames – to the Oligocene period, a time about which scientists know relatively little.

The start of the Oligocene period coincides not only with huge climate shifts, but also with marked changes in the Earth’s oceanography. Scientists detect a shift towards patterns more like those today where wind systems from the northern and southern hemispheres come together and stir the ocean near the equator so that deep, nutrient-rich waters come to the surface and support a diverse, thriving community of plankton. In the Eocene period, the oceanic biological system had been broad and diffuse with low plankton productivity.


Dr Wade is completing a detailed study of plankton fossils, which will help to build the most accurate picture so far of how the Oligocene climate changed over time. And, because the core sample holds a unique, unbroken geological record over a 10m year period, it can help the scientists to date Oligocene rocks more accurately than ever before. The current margin for error is 1m years, but the new study could help to cut that figure to about 50,000 years.

Dr Wade said: “It’s exciting being part of an international team working on a single grand problem. The Oligocene period remains something of a mystery because, until now, there have been no good cores. This study will help us create a more accurate picture of that time. People used to think big climate changes had only occurred during the last million years, but research suggests that dramatic change has always taken place as a result of natural processes.”

Ronald Kerr | alphagalileo

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>