Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bear hunting altered genetics more than Ice Age isolation

23.11.2007
It was not the isolation of the Ice Age that determined the genetic distribution of bears, as has long been thought.

This is shown by an international research team led from Uppsala University in Sweden in the latest issue of Molecular Ecology. One possible interpretation is that the hunting of bears by humans and human land use have been crucial factors.

Twenty thousand years ago Europe was covered by ice down to Germany, and the climate in the rest of Europe was such that several species were confined to the southern regions, like the Iberian Peninsula and Italy. These regions were refuges, areas where species could survive during cold periods and then re-colonize central and northern Europe when it got warmer.

But the brown bear was not limited to these regions­it could roam freely across major parts of southern and central Europe. The current study analyzed mitochondria from bear remains. Some of the fossils are 20,000 years old. The analysis shows that the genetic pattern in these ancient brown bears differed from that of bears living today.

“Previously today’s genetic structure was interpreted as showing that the brown bear was isolated in southern Europe, just like many other species. But our study shows that this was not the case,” says Love Dalén, one of the Swedes participating in the study.

The new findings show instead that the brown bear survived in central Europe, even during the coldest period of the Ice Age. The scientists now believe that the genetic pattern found in today’s brown bears is the result of historical hunting and of human activities in the brown bear’s natural environment. A few thousand years ago, there were brown bears all over Europe, while today there are just a few remaining populations in Spain, Italy, the Balkans, and Scandinavia.

“It’s not strange that findings were interpreted differently in the past, with the brown bear extinct in most of its old area of inhabitation. We only had the remnant populations to work with,” says Anders Götherstam, who directed the study.

The study was carried out in collaboration between Swedish researchers and colleagues in Spain, the U.K., Germany, and France. It is published in the journal Molecular Biology. The Swedish team also includes the researcher Cecilia Anderung.

Anneli Waara | alfa
Further information:
http://www.blackwell-synergy.com/doi/full/10.1111/j.1365-294X.2007.03590.x

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>