Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are current projections of climate change-impacts on biodiversity misleading?

22.11.2007
This is the urgent question arising from the study “Quaternary climate changes explain diversity among reptiles and amphibians”, published in the journal Ecography.

Why is life on Earth not evenly distributed? Geographic patterns of species diversity and their underlying processes have intrigued scientists for centuries, and continue to spur scientific debate. Studies carried out over the past 20 years have led to the conclusion that species diversity is best predicted by contemporary patterns of energy and water, the so-called “contemporary climate” hypothesis.

Because current climate gradients are correlated with past climate variability, it has also been suggested that current climate acts as a surrogate for evolutionary processes that have been triggered by past climate variability, giving rise to the “historic climate” hypothesis. Now, new high-resolution data on historic climate has allowed Dr Araújo in collaboration with Dr Rahbek and other colleagues to finally directly test the “historic climate” versus “contemporary climate” hypotheses of biological diversity. Their illuminating results are published in a recent paper in Ecography. Contrary to the expectations of many scientists they found that historic climate variability was a better predictor of reptilian and amphibian diversity in Europe than contemporary climate.

“The lack of quantitative spatial data on variation in climate over historical time has prevented more rigorous testing of these diverging hypotheses”, says Dr. Miguel B. Araújo from the National Museum of Natural Sciences (CSIC) in Madrid. As a consequence, “the debate on the causes of diversity gradients has turned to some degree into a discussion of semantics”.

Recent developments in general climate models have finally facilitated high resolution predictions of past climates. In collaboration with leading climatologists working on paleoclimate modeling in the United Kingdom, Drs. Araújo, Rahbek and colleagues provide the first comparative test capable of differentiating between the contribution of contemporary and historical climate drivers of diversity gradients across a complete lineage of species at a continental scale.

“In recent years, analytical attempts to shed light on the role of history in determining today’s patterns of species richness have focused on the strong residual variation of models using contemporary climate”, explains Dr. Carsten Rahbek from the Center of Macroecology at the University of Copenhagen. “It has been argued that these residuals provide information about the role of historical rather than contemporary constraints. However, such an analytical approach assumes that contemporary climate is the main explanatory force. In other words, the contemporary and historical hypotheses are not tested simultaneously in a directly comparable manner, and historical hypotheses are only invoked to explain what is left to elucidate after the implementation of contemporary environmental processes”, says Dr. Rahbek.

“Our results are striking in that they contradict previous studies of large-scale patterns of species richness” affirms Dr. Rahbek. “They provide the first evidence, using a quantitative analytical approach, that historic climate can contribute to current patterns of richness independently of, and at least as much as contemporary climate”. This study has profound implications for the study of diversity on Earth, and challenges the current view that patterns of contemporary climate are sufficient to explain and predict diversity.

Differentiating between contemporary and historical hypotheses is important, not only for theoretical reasons: “an understanding of the mechanisms that generate and maintain diversity provides valuable insights for predicting the impacts of contemporary climate changes on biodiversity”, says Dr. Araújo. “If contemporary climate does drive species richness, then current climate variables could be used to accurately predict the effects of climate change on biodiversity. If, as shown in our study, the mechanisms underlying contemporary patterns of species richness are in fact strongly influenced by the history of climate, then current-climate predictions may be seriously misleading and alternative approaches to predict the effects of climate change on biodiversity must be developed”.

Davina Quarterman | alfa
Further information:
http://www.blackwell-synergy.com/doi/abs/10.1111/j.2007.0906-7590.05318.x

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>