Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tsunami-Recording in the Deep Sea

20.11.2007
Data transfer for tsunami early warning system successfully tested

In order to extend alert times and avoid false alarms, a new seafloor pressure recording system has been designed to detect tsunamis shortly after their development in the open ocean. The project is directed by scientists of the working group 'Marine Observation Systems' at the Alfred Wegener Institute for Polar and Marine Research, part of the Helmholtz Association. Successful testing of the recording system off the Canary Islands in November 2007 means that a new mile stone for the development of the Indian Ocean Tsunami Early Warning System (GITEWS) has been reached.

The GITEWS project is supervised by the German National Research Centre for Geosciences (GFZ) in Postdam. Scientists of the Alfred Wegener Institute, in collaboration with companies Optimare and develogic, and with the Zentrum für Marine Umweltwissenschaften (MARUM) and the University of Rhode Island, are developing part of the simulation component and the so-called pressure-based acoustically coupled tsunami detector (PACT) for real-time detection of sea level rises in the deep ocean.

The German tsunami early warning system is unique in that it processes a multitude of information as the basis for a comprehensive and accurate evaluation of every particular situation. Within just few minutes, measurements of the vibrations and horizontal seafloor movements off the coast of Indonesia provide a clear picture of the location and intensity of a seaquake, which, at the warning centre, facilitate the appropriate selection of a previously calculated tsunami propagation model. However, not every seafloor quake causes a tsunami. "There is only one way to be clear about this and avoid nerve-wrecking and costly false alarms: we must measure sea level directly", says PACT-project leader Dr Olaf Boebel of the Alfred Wegener Institute.

For this purpose, sea level recordings must take place off the coast, in the deep ocean. At water depths of thousands of meters, a tsunami wave travels at several hundred km/hr, but is only some tens of centimetres high, and approximately one hundred kilometres long. Not before it reaches the coast or shallower waters, does a tsunami wave develop into a massive wall of water several meters high. Being able to detect the very slight sea level rise in the deep ocean reliably and precisely requires the use of bottom pressure sensors. These instruments are installed on the seafloor where they measure any sea level changes in the water column above. In this process, the weight of any additional water leads to minute pressure increases at the seafloor which are, nevertheless, reliably recorded by the PACT bottom units, precision instruments built by Optimare in Bremerhaven.

How is it possible then to send the potentially life-saving information about such pressure changes at the seafloor to the warning centre? Representing one of the greatest challenges of the PACT project, this problem was addressed by the Stuttgart-based company develogic through use of highly modern technology: Similar to a fax machine, an acoustic modem uses a sequence of sounds - the so-called telegram - to transmit information to a second modem which is connected to a buoy near the surface, sending the data via satellite to the warning centre.

Within the overarching GITEWS project, the primary PACT objective consists of the new development of a reliable, compact and highly energy efficient system which will record and analyse seafloor pressure every 15 seconds, and which will transmit the information to the surface modem if a tsunami event is detected. After approximately two years of development work on PACT, an important milestone was reached recently, when in-situ tests of the system were completed successfully north of the Canary Islands, using a trial fixture supplied by MARUM (Zentrum für Marine Umweltwissenschaften in Bremen). From depths below 3100 metres and over periods of several days, pressure data were transmitted repeatedly to the surface modem. The most important result: none of the data telegrams were lost, a crucial requirement for the reliable functioning of the warning system.

Having been tested successfully, the new system will now be integrated into the GFZ-developed surface buoy and the entire early warning system. Further tests, scheduled for early next year in the Mediterranean, will investigate the transmission reliability under various weather conditions. "Surely, the upcoming winter storms will give us the opportunity to discover the limits of the system", suggests Boebel.

The technology group 'Marine Observation Systems' at the Alfred Wegener Institute has been operating since January 2005. It consists of oceanographers, physicists, biologists and environmental scientists, and specialises in the development and use of innovative recording systems for marine scientific research and environmental protection. More information can be found on the internet at: http://www.awi.de/en/research/new_technologies/marine_observing_systems/

Information about the German-Indonesian tsunami early warning system can be found on the GITEWS project website at http://www.gitews.de. Apart from the Alfred Wegener Institute, other Helmholtz Institutes involved in the project include the National Research Centre for Geosciences in Postdam (project coordination), the German Aerospace Centre, and the GKSS Research Centre in Geesthacht.

Notes for Editors: Your contact person is Dr Olaf Boebel (Tel: ++49-471-4831-1879, email: Olaf.Boebel@awi-de), and in the public relations department Dr Susanne Diederich (Tel: ++49-471-4831-1376, email: medien@awi-de).

Please send us a copy of any published version of this document.

The Alfred Wegener Institute for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and in oceans of mid and high latitudes. The AWI coordinates polar research in Germany, and provides important infrastructure, such as the research icebreaker Polarstern and stations in the Arctic and Antarctic, for international science organisations. The AWI is one of 15 research centres of the 'Helmholtz-Gemeinschaft' (Helmholtz Association), the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.gitews.de
http://www.awi.de/en/research/new_technologies/marine_observing_systems/

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>