Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tsunami-Recording in the Deep Sea

Data transfer for tsunami early warning system successfully tested

In order to extend alert times and avoid false alarms, a new seafloor pressure recording system has been designed to detect tsunamis shortly after their development in the open ocean. The project is directed by scientists of the working group 'Marine Observation Systems' at the Alfred Wegener Institute for Polar and Marine Research, part of the Helmholtz Association. Successful testing of the recording system off the Canary Islands in November 2007 means that a new mile stone for the development of the Indian Ocean Tsunami Early Warning System (GITEWS) has been reached.

The GITEWS project is supervised by the German National Research Centre for Geosciences (GFZ) in Postdam. Scientists of the Alfred Wegener Institute, in collaboration with companies Optimare and develogic, and with the Zentrum für Marine Umweltwissenschaften (MARUM) and the University of Rhode Island, are developing part of the simulation component and the so-called pressure-based acoustically coupled tsunami detector (PACT) for real-time detection of sea level rises in the deep ocean.

The German tsunami early warning system is unique in that it processes a multitude of information as the basis for a comprehensive and accurate evaluation of every particular situation. Within just few minutes, measurements of the vibrations and horizontal seafloor movements off the coast of Indonesia provide a clear picture of the location and intensity of a seaquake, which, at the warning centre, facilitate the appropriate selection of a previously calculated tsunami propagation model. However, not every seafloor quake causes a tsunami. "There is only one way to be clear about this and avoid nerve-wrecking and costly false alarms: we must measure sea level directly", says PACT-project leader Dr Olaf Boebel of the Alfred Wegener Institute.

For this purpose, sea level recordings must take place off the coast, in the deep ocean. At water depths of thousands of meters, a tsunami wave travels at several hundred km/hr, but is only some tens of centimetres high, and approximately one hundred kilometres long. Not before it reaches the coast or shallower waters, does a tsunami wave develop into a massive wall of water several meters high. Being able to detect the very slight sea level rise in the deep ocean reliably and precisely requires the use of bottom pressure sensors. These instruments are installed on the seafloor where they measure any sea level changes in the water column above. In this process, the weight of any additional water leads to minute pressure increases at the seafloor which are, nevertheless, reliably recorded by the PACT bottom units, precision instruments built by Optimare in Bremerhaven.

How is it possible then to send the potentially life-saving information about such pressure changes at the seafloor to the warning centre? Representing one of the greatest challenges of the PACT project, this problem was addressed by the Stuttgart-based company develogic through use of highly modern technology: Similar to a fax machine, an acoustic modem uses a sequence of sounds - the so-called telegram - to transmit information to a second modem which is connected to a buoy near the surface, sending the data via satellite to the warning centre.

Within the overarching GITEWS project, the primary PACT objective consists of the new development of a reliable, compact and highly energy efficient system which will record and analyse seafloor pressure every 15 seconds, and which will transmit the information to the surface modem if a tsunami event is detected. After approximately two years of development work on PACT, an important milestone was reached recently, when in-situ tests of the system were completed successfully north of the Canary Islands, using a trial fixture supplied by MARUM (Zentrum für Marine Umweltwissenschaften in Bremen). From depths below 3100 metres and over periods of several days, pressure data were transmitted repeatedly to the surface modem. The most important result: none of the data telegrams were lost, a crucial requirement for the reliable functioning of the warning system.

Having been tested successfully, the new system will now be integrated into the GFZ-developed surface buoy and the entire early warning system. Further tests, scheduled for early next year in the Mediterranean, will investigate the transmission reliability under various weather conditions. "Surely, the upcoming winter storms will give us the opportunity to discover the limits of the system", suggests Boebel.

The technology group 'Marine Observation Systems' at the Alfred Wegener Institute has been operating since January 2005. It consists of oceanographers, physicists, biologists and environmental scientists, and specialises in the development and use of innovative recording systems for marine scientific research and environmental protection. More information can be found on the internet at:

Information about the German-Indonesian tsunami early warning system can be found on the GITEWS project website at Apart from the Alfred Wegener Institute, other Helmholtz Institutes involved in the project include the National Research Centre for Geosciences in Postdam (project coordination), the German Aerospace Centre, and the GKSS Research Centre in Geesthacht.

Notes for Editors: Your contact person is Dr Olaf Boebel (Tel: ++49-471-4831-1879, email: Olaf.Boebel@awi-de), and in the public relations department Dr Susanne Diederich (Tel: ++49-471-4831-1376, email: medien@awi-de).

Please send us a copy of any published version of this document.

The Alfred Wegener Institute for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and in oceans of mid and high latitudes. The AWI coordinates polar research in Germany, and provides important infrastructure, such as the research icebreaker Polarstern and stations in the Arctic and Antarctic, for international science organisations. The AWI is one of 15 research centres of the 'Helmholtz-Gemeinschaft' (Helmholtz Association), the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>