Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rogue Wave Detection

19.11.2007
Giant waves, also known as monster waves, have been talked about by sailors for centuries, often related to unexplained disappearances at sea, but no one quite believed them.

They have been considered merely a myth until recently, when new studies using technological developments like buoys, radars and satellites have scientifically proven the existence of rouge waves, and that they exist in much higher numbers than it was ever expected.

These rogue waves could be the cause of tragic accidents at sea, not only because of their immense power and heights that reach over 30 meters, but it is their unpredictable nature that poses a bigger threat; they emerge as unexpected mighty walls of water towering from calm seas.

This is why Jose Carlos Nieto, a researcher from the Universidad de Alcalá, Madrid in collaboration with the German research centre GKSS have developed a software tool that can detect these waves and monitor their evolution in time and space. There are currently other methods of detection, like wave rider buoys to measure the height of waves at sea, but the information they provide is not as complete since buoys only measure the waves at a single point at sea, thus lacking the spatial dimension. This software detects the wave front from a radar image and is now being commercialised by a spin-off company of the GKSS.

The image of the sea that forms on a radar screen is the result of different mechanisms of interaction between the electromagnetic energy emitted by the radar and the sea surface. The detection of the reflected energy from the wave by the system does not depend so much on the wave’s height, but on other factors such as the wind and wave inclination. The tool developed by Professor Nieto from the signal theory department of the Universidad de Alcalá translates the radar image into a measurement of the elevation of the waves. The software uses a mathematical model to evaluate and process by different mechanisms the radar image that is generated and another model to determine the spatial and temporal dimensions of the waves.

The image on the left corresponds to the raw radar image, while the one on the right is the image once processed by the software. Thanks to the colour code it can be appreciated that higher waves propagate as a group. This effect is called wave grouping and has a great relevance for the safety of marine structures such as ships, dikes, platforms. The software can be used to provide warning of an approaching extreme wave, giving time to prepare and minimise its effects. The accurate wave dynamics that the software provides could also be used to predict the precise trajectory of oil spills and other contaminants that float on the sea, and it is on this application that most of the current investigation is being carried out at the Universidad de Alcalá by Professor Nieto, member of the High frequency technology group, among other specialists like physicists and telecommunications engineers from the signal theory department of the UAH.

Oficina de Información Científic | alfa
Further information:
http://www.uah.es

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>