Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rogue Wave Detection

19.11.2007
Giant waves, also known as monster waves, have been talked about by sailors for centuries, often related to unexplained disappearances at sea, but no one quite believed them.

They have been considered merely a myth until recently, when new studies using technological developments like buoys, radars and satellites have scientifically proven the existence of rouge waves, and that they exist in much higher numbers than it was ever expected.

These rogue waves could be the cause of tragic accidents at sea, not only because of their immense power and heights that reach over 30 meters, but it is their unpredictable nature that poses a bigger threat; they emerge as unexpected mighty walls of water towering from calm seas.

This is why Jose Carlos Nieto, a researcher from the Universidad de Alcalá, Madrid in collaboration with the German research centre GKSS have developed a software tool that can detect these waves and monitor their evolution in time and space. There are currently other methods of detection, like wave rider buoys to measure the height of waves at sea, but the information they provide is not as complete since buoys only measure the waves at a single point at sea, thus lacking the spatial dimension. This software detects the wave front from a radar image and is now being commercialised by a spin-off company of the GKSS.

The image of the sea that forms on a radar screen is the result of different mechanisms of interaction between the electromagnetic energy emitted by the radar and the sea surface. The detection of the reflected energy from the wave by the system does not depend so much on the wave’s height, but on other factors such as the wind and wave inclination. The tool developed by Professor Nieto from the signal theory department of the Universidad de Alcalá translates the radar image into a measurement of the elevation of the waves. The software uses a mathematical model to evaluate and process by different mechanisms the radar image that is generated and another model to determine the spatial and temporal dimensions of the waves.

The image on the left corresponds to the raw radar image, while the one on the right is the image once processed by the software. Thanks to the colour code it can be appreciated that higher waves propagate as a group. This effect is called wave grouping and has a great relevance for the safety of marine structures such as ships, dikes, platforms. The software can be used to provide warning of an approaching extreme wave, giving time to prepare and minimise its effects. The accurate wave dynamics that the software provides could also be used to predict the precise trajectory of oil spills and other contaminants that float on the sea, and it is on this application that most of the current investigation is being carried out at the Universidad de Alcalá by Professor Nieto, member of the High frequency technology group, among other specialists like physicists and telecommunications engineers from the signal theory department of the UAH.

Oficina de Información Científic | alfa
Further information:
http://www.uah.es

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>