Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurements link magma melting rate to tectonic plate subduction rate

12.11.2007
Determining the origin and rate of magma production in subduction zone volcanoes is essential to understanding the formation of continental crust and the recycling of subducted materials back into Earth’s mantle.

Now, geologists at the University of Illinois report new measurements of rock samples from Kick’em Jenny, a submarine volcano in the Caribbean, that link the rate at which magma is produced beneath subduction zone volcanoes to the rate at which tectonic plates converge in this plate tectonic setting.

“We can use the geochemical measurements to constrain a geophysical parameter, the melt production rate; we then relate the melting rate at an individual subduction zone to its plate convergence rate, which can also be measured,” said Craig Lundstrom, a UI professor of geology. “We can then use this information in similar situations to understand the rate at which magma is produced in other settings.”

Lundstrom and graduate research assistant Fang Huang report their findings in the November issue of the journal Geology, which is published by the Geological Society of America.

The geochemical technique is based on uranium decaying to lead through a long decay chain of short-lived nuclides. For example, U-235 (a “parent” with a half-life of 700 million years) will decay to Pa-231 (protactinium-231: a “daughter” with a half-life of 33,000 years). By measuring the ratio of parent and daughter species in a rock sample (a technique called uranium-series dating), scientists can determine whether the rock is in secular equilibrium (and quite old), or in uranium series-disequilibrium (and very young).

Using multiple-collector inductively coupled plasma-mass spectrometry, Huang and Lundstrom analyzed 12 rock samples from Kick’em Jenny, a submarine volcano located about 8 kilometers north of Grenada in the southern Lesser Antilles arc.

At Kick’em Jenny, the Atlantic oceanic plate is being pushed beneath the Caribbean plate at a rate of 2-4 centimeters per year, one of the lowest convergence rates of any subduction zone.

In Kick’em Jenny lavas, the researchers found there was twice as much protactinium than should be present if the system was in secular equilibrium. This is the largest protactinium-uranium disequilibrium found in any subduction-zone volcano.

The relationship between melting rate and convergence rate centers on the role of water during melting. “An essential part of all volcanoes at subduction zones is the amount of water involved in the mantle melting process,” Huang said. “During subduction, water is released from the subducting slab into the mantle wedge, which lowers the melting point of the rock. When less water is transported to the mantle, less melt is produced.”

At Kick’em Jenny, water is being added very slowly, because the subducting plate is going down very slowly, Lundstrom said. This results in a slower melting rate, which produces a higher ratio of protactinium to uranium 235.

“This is the first study to show that there is a straightforward relationship between this uranium disequilibrium system and the rate of tectonic plate convergence,” Lundstrom said. “No doubt these short-lived nuclides can be used for a variety of other processes in volcanoes, from determining how fast crystals form to how fast magma moves under mid-ocean-ridge volcanoes.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>