Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurements link magma melting rate to tectonic plate subduction rate

12.11.2007
Determining the origin and rate of magma production in subduction zone volcanoes is essential to understanding the formation of continental crust and the recycling of subducted materials back into Earth’s mantle.

Now, geologists at the University of Illinois report new measurements of rock samples from Kick’em Jenny, a submarine volcano in the Caribbean, that link the rate at which magma is produced beneath subduction zone volcanoes to the rate at which tectonic plates converge in this plate tectonic setting.

“We can use the geochemical measurements to constrain a geophysical parameter, the melt production rate; we then relate the melting rate at an individual subduction zone to its plate convergence rate, which can also be measured,” said Craig Lundstrom, a UI professor of geology. “We can then use this information in similar situations to understand the rate at which magma is produced in other settings.”

Lundstrom and graduate research assistant Fang Huang report their findings in the November issue of the journal Geology, which is published by the Geological Society of America.

The geochemical technique is based on uranium decaying to lead through a long decay chain of short-lived nuclides. For example, U-235 (a “parent” with a half-life of 700 million years) will decay to Pa-231 (protactinium-231: a “daughter” with a half-life of 33,000 years). By measuring the ratio of parent and daughter species in a rock sample (a technique called uranium-series dating), scientists can determine whether the rock is in secular equilibrium (and quite old), or in uranium series-disequilibrium (and very young).

Using multiple-collector inductively coupled plasma-mass spectrometry, Huang and Lundstrom analyzed 12 rock samples from Kick’em Jenny, a submarine volcano located about 8 kilometers north of Grenada in the southern Lesser Antilles arc.

At Kick’em Jenny, the Atlantic oceanic plate is being pushed beneath the Caribbean plate at a rate of 2-4 centimeters per year, one of the lowest convergence rates of any subduction zone.

In Kick’em Jenny lavas, the researchers found there was twice as much protactinium than should be present if the system was in secular equilibrium. This is the largest protactinium-uranium disequilibrium found in any subduction-zone volcano.

The relationship between melting rate and convergence rate centers on the role of water during melting. “An essential part of all volcanoes at subduction zones is the amount of water involved in the mantle melting process,” Huang said. “During subduction, water is released from the subducting slab into the mantle wedge, which lowers the melting point of the rock. When less water is transported to the mantle, less melt is produced.”

At Kick’em Jenny, water is being added very slowly, because the subducting plate is going down very slowly, Lundstrom said. This results in a slower melting rate, which produces a higher ratio of protactinium to uranium 235.

“This is the first study to show that there is a straightforward relationship between this uranium disequilibrium system and the rate of tectonic plate convergence,” Lundstrom said. “No doubt these short-lived nuclides can be used for a variety of other processes in volcanoes, from determining how fast crystals form to how fast magma moves under mid-ocean-ridge volcanoes.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>