Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yellowstone rising

09.11.2007
Volcano inflating with molten rock at record rate

The Yellowstone “supervolcano” rose at a record rate since mid-2004, likely because a Los Angeles-sized, pancake-shaped blob of molten rock was injected 6 miles beneath the slumbering giant, University of Utah scientists report in the journal Science.

“There is no evidence of an imminent volcanic eruption or hydrothermal explosion. That’s the bottom line,” says seismologist Robert B. Smith, lead author of the study and professor of geophysics at the University of Utah. “A lot of calderas [giant volcanic craters] worldwide go up and down over decades without erupting.”

The upward movement of the Yellowstone caldera floor – almost 3 inches (7 centimeters) per year for the past three years – is more than three times greater than ever observed since such measurements began in 1923, says the study in the Nov. 9 issue of Science by Smith, geophysics postdoctoral associate Wu-Lung Chang and colleagues.

“Our best evidence is that the crustal magma chamber is filling with molten rock,” Smith says. “But we have no idea how long this process goes on before there either is an eruption or the inflow of molten rock stops and the caldera deflates again,” he adds.

The magma chamber beneath Yellowstone National Park is a not a chamber of molten rock, but a sponge-like body with molten rock between areas of hot, solid rock.

Chang, the study’s first author, says: “To say if there will be a magma [molten rock] eruption or hydrothermal [hot water] eruption, we need more independent data.”

Calderas such as Yellowstone, California’s Long Valley (site of the Mammoth Lakes ski area) and Italy’s Campi Flegrei (near Naples) huff upward and puff downward repeatedly for decades to tens of thousands of years without catastrophic eruptions.

Smith and Chang conducted the study with University of Utah geophysics doctoral students Jamie M. Farrell and Christine Puskas, and with geophysicist Charles Wicks, of the U.S. Geological Survey in Menlo Park, Calif.

Yellowstone: A Gigantic Volcano Atop a Hotspot

Yellowstone is North America’s largest volcanic field, produced by a “hotspot” – a gigantic plume of hot and molten rock – that begins at least 400 miles beneath Earth’s surface and rises to 30 miles underground, where it widens to about 300 miles across. There, blobs of magma or molten rock occasionally break off from the top of the plume, and rise farther, resupplying the magma chamber beneath the Yellowstone caldera.

Previous research indicates the magma chamber begins about 5 miles beneath Yellowstone and extends down to a depth of at least 10 miles. Its heat powers Yellowstone’s geysers and hot springs – the world’s largest hydrothermal field.

As Earth’s crust moved southwest over the Yellowstone hotspot during the past 16.5 million years, it produced more than 140 cataclysmic explosions known as caldera eruptions, the largest but rarest volcanic eruptions known. Remnants of ancient calderas reveal the eruptions began at the Oregon-Idaho-Nevada border some 16.5 million years ago, then moved progressively northeast across what is now the Snake River Plain.

The hotspot arrived under the Yellowstone area sometime after about 4 million years ago, producing gargantuan eruptions there 2 million, 1.3 million and 642,000 years ago. These eruptions were 2,500, 280 and 1,000 times bigger, respectively, than the 1980 eruption of Mount St. Helens. The eruptions covered as much as half the continental United States with inches to feet of volcanic ash.

The most recent giant eruption created the 40-mile-by-25-mile oval-shaped Yellowstone caldera. The caldera walls have eroded away in many areas – although they remain visible in the northwest portion of the park. Yellowstone Lake sits roughly half inside and half outside the eroded caldera. Many smaller volcanic eruptions occurred at Yellowstone between and since the three big blasts, most recently 70,000 years ago. Smaller steam and hot water explosions have been more frequent and more recent.

Measuring a Volcano Getting Pumped Up

In the new study, the scientists measured uplift of the Yellowstone caldera from July 2004 through the end of 2006 with two techniques:

Twelve Global Positioning System (GPS) ground stations that receive timed signals from satellites, making it possible to measure ground uplift precisely.

The European Space Agency’s Envisat satellite, which bounces radar waves off the Yellowstone caldera’s floor, another way to measure elevation change.

The measurements showed that from mid-2004 through 2006, the Yellowstone caldera floor rose as fast as 2.8 inches (7 centimeters) per year – and by a total of 7 inches (18 centimeters) during the 30-month period, Chang says.

“The uplift is still going on today but at a little slower rate,” says Smith, adding there is no way to know when it will stop.

Smith says the fastest rate of uplift previously observed at Yellowstone was about 0.8 inch (2 centimeters) per year between 1976 and 1985.

He says that Yellowstone’s recent upward motion may seem small, but is twice as fast as the average rate of horizontal movement along California’s San Andreas fault.

The current uplift is faster than ever observed at Yellowstone, but may not be the fastest ever, since humans weren’t around for its three supervolcano eruptions.

Chang, Smith and colleagues conducted computer simulations to determine what changes in shape of the underground magma chamber best explained the recent uplift.

The simulations or “modeling” suggested the molten rock injected since mid-2004 is a nearly horizontal slab – known to geologists as a sill – that rests about 6 miles (10 kilometers) beneath Yellowstone National Park. The slab sits within and near the top of the pre-existing magma chamber, which resembles two anvil-shaped blobs expanding upward from a common base.

Smith describes the slab’s computer-simulated shape as “kind of like a mattress” about 38 miles long and 12 miles wide, but only tens or hundreds of yards thick.

In reality, he believes the slab resembles a large, spongy pancake formed as molten rock injected from below spread out near the top of the magma chamber.

The pancake of molten rock has an area of about 463 square miles, compared with 469 square miles of land for the City of Los Angeles.

Smith and colleagues believe steam and hot water contribute to uplift of the Yellowstone caldera, particularly during some previous episodes, but evidence indicates molten rock is responsible for most of the current uplift.

Chang says that when rising molten rock reaches the top of the magma chamber, it starts to crystallize and solidify, releasing hot water and gases, pressuring the magma chamber. But gases and steam compress more easily than molten rock, so much greater volumes would be required to explain the volcano’s inflation, the researchers say.

Also, large volumes of steam and hot water usually are no deeper than 2 miles, so they are unlikely to be inflating the magma chamber 6 miles underground, Smith adds.

Ups and Downs at Yellowstone

Conventional surveying of Yellowstone began in 1923. Measurements showed the caldera floor rose 40 inches during 1923-1984, and then fell 8 inches during 1985-1995.

GPS data showed the Yellowstone caldera floor sank 4.4 inches during 1987-1995. From 1995 to 2000, the caldera rose again, but the uplift was greatest – 3 inches – at Norris Geyser Basin, just outside the caldera’s northwest rim.

During 2000-2003, the northwest area rose another 1.4 inches, but the caldera floor itself sank about 1.1 inches. The trend continued during the first half of 2004. Then, in July 2004, the caldera floor began its rapid rate of uplift, followed three months later by sinking of the Norris area that continued until mid-2006.

Smith believes that uplift of the middle of the caldera decreased pressure within rocks along the edges of the giant crater, “so it allowed fluids to flow into the area of increased porosity.” That, in turn, triggered small earthquakes along the edge of the “pancake” of magma. The amount of hot water flowing out of the deflated Norris area is much smaller than the volume of magma injected beneath the caldera, Smith says.

Lee Siegel | EurekAlert!
Further information:
http://www.unews.utah.edu

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>