Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Drilling for "Black Smoker" Clues

09.11.2007
A project to learn more about extracting energy from hot rocks on land should give clues about "black smokers," hydrothermal vents that belch superheated water and minerals deep below the ocean.

As part of the Iceland Deep Drilling Project, researchers from UC Davis, UC Riverside, Stanford University and the University of Oregon plan to sink a deep borehole into a site on land where seawater circulates through deep, hot rock. Most such sites on land have circulating fresh water, with very different chemistry.

"It's the dry land version of a deep sea hydrothermal vent," said Robert Zierenberg, professor of geology at UC Davis. Zierenberg and another geology professor, Peter Schiffman, are the UC Davis members of the research team. "It's the first opportunity to look at rocks and fluid together and in situ."

Deep ocean hydrothermal vents support unique communities of living things that, unlike most ecosystems on Earth, draw no energy from the sun. The vents also generate unusual, and possibly valuable, deposits of copper, zinc and other minerals.

Zierenberg said it is technically challenging to drill into rocks that are under high pressure and bathed in corrosive fluids at 450 degrees Celsius (840 degrees Fahrenheit), but it is easier than trying to drill deep below the sea floor in the deepest parts of the ocean.

The Iceland Deep Drilling Project is supported by the Icelandic power industry and government, in collaboration with U.S. government agencies. It aims to drill deep boreholes to learn more about processes in deep, hot rocks, with the goal of producing more energy from a single geothermal well. Iceland already gets half of its electrical power and meets much of its needs for space heating and hot water from geothermal energy.

The university research project is supported by grants from the National Science Foundation and the International Continental Drilling Program. The researchers expect to start drilling in the summer of 2008.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>