Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Drilling for "Black Smoker" Clues

09.11.2007
A project to learn more about extracting energy from hot rocks on land should give clues about "black smokers," hydrothermal vents that belch superheated water and minerals deep below the ocean.

As part of the Iceland Deep Drilling Project, researchers from UC Davis, UC Riverside, Stanford University and the University of Oregon plan to sink a deep borehole into a site on land where seawater circulates through deep, hot rock. Most such sites on land have circulating fresh water, with very different chemistry.

"It's the dry land version of a deep sea hydrothermal vent," said Robert Zierenberg, professor of geology at UC Davis. Zierenberg and another geology professor, Peter Schiffman, are the UC Davis members of the research team. "It's the first opportunity to look at rocks and fluid together and in situ."

Deep ocean hydrothermal vents support unique communities of living things that, unlike most ecosystems on Earth, draw no energy from the sun. The vents also generate unusual, and possibly valuable, deposits of copper, zinc and other minerals.

Zierenberg said it is technically challenging to drill into rocks that are under high pressure and bathed in corrosive fluids at 450 degrees Celsius (840 degrees Fahrenheit), but it is easier than trying to drill deep below the sea floor in the deepest parts of the ocean.

The Iceland Deep Drilling Project is supported by the Icelandic power industry and government, in collaboration with U.S. government agencies. It aims to drill deep boreholes to learn more about processes in deep, hot rocks, with the goal of producing more energy from a single geothermal well. Iceland already gets half of its electrical power and meets much of its needs for space heating and hot water from geothermal energy.

The university research project is supported by grants from the National Science Foundation and the International Continental Drilling Program. The researchers expect to start drilling in the summer of 2008.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>