Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies Arctic lakes as a major source of prehistoric methane

31.10.2007
Researchers from the University of Alaska-Fairbanks and the University of Southampton have identified Arctic lakes as a likely source of increased levels of atmospheric methane as temperatures rose towards the end of the last ice age.

Previous studies of ice cores from Greenland and Antarctica have shown that when global climates warmed between 14,000 and 11,500 years ago, levels of methane in the atmosphere increased significantly. There was also an unidentified northern source of the gas at that time.

According to new research published in the latest edition of the journal Science (26 October), methane bubbling from Arctic lakes could have been responsible for up to 87 per cent of this northern source. The findings could help climate modellers to assess how warming affects atmospheric levels of methane, a potent greenhouse gas.

Previous hypotheses suggested that the increase came from gas hydrates or wetlands. The new study's findings indicate that methane bubbling from thermokarst lakes, which are formed when permafrost thaws rapidly, is likely to be a third and major source.

'Our research focused on areas of Siberia and Alaska which, during the last ice age, were dry landscapes underlain by deep permafrost,' commented co-author Professor Mary Edwards of the University of Southampton's School of Geography. 'As the climate warmed, the permafrost thawed, forming thermokarst lakes. When the permafrost around and under the lakes thawed, it would have released organic material into the lakes - primarily dead plant material - which would be a good energy source for methane-producing bacteria. Under such conditions, carbon which had been locked in the ground for thousands of years could rapidly be converted into potent greenhouse gases: methane and carbon dioxide.'

The group's calculations suggest that the lakes contributed 33 to 87 per cent of the methane increase from northern sources. The team examined lakes in Siberia and northern Alaska that currently release methane. They gathered samples of permafrost and thawed them in the laboratory to measure the levels of methane that permafrost soil can produce immediately after thawing. Using geological data they were able to reconstruct the pattern of lake formation since the end of the last ice age.

'Thermokarst lake formation is a source of atmospheric methane today, but it was even more important during the warming that took place at the end of the ice age,' continues Professor Edwards. 'It is possible that, with global warming, large releases from these lakes may occur again in the future.'

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>