Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine researchers explore sediment highways

19.04.2002


A European team of researchers has demonstrated that sediment is transported to the deep sea via canyons in the seabed. The sediment accumulates in the head of the submarine canyons. At the end of the canyons, mud avalanches disperse into the deep sea. Scientists from the Netherlands Institute for Sea Research (NIOZ) presented their findings at an international congress held from 7 to 10 April 2002.



With bottom landers, onboard the ship R.V. Pelagia, the researchers explored the Nazaré Canyon off the Portuguese coast. This is one of the largest submarine canyons in the world. The Canyon starts at the beach. At a distance of 150 kilometres from the coast it opens out into a deep-sea area, 5 km deep. Locally the canyon cuts more than one kilometre deep into the continental slope. In the floor of the canyon the researchers measured unusually high biochemical activity. The sediment is enriched in organic material, which can serve as food for the rich floor life in the canyon and the deep-sea area. However, the sediment is possibly mixed with chemical pollutants originating from human activity. In addition to this the water in the canyon was noticeably turbid. This indicates an elevated transport of sediment particles. The sediment accumulates rapidly in the canyon. As a result of this the floor becomes unstable. The researchers demonstrated that the accumulated sediment runs off the slope as submarine mud avalanches into the deep-sea area. This happens at intervals of several decades to several centuries. With the rapid growth of the world population, the use of the continental margin (the transition area between the mainland and the open ocean) is quickly increasing. As a result of this marine ecosystems are being subjected to greater pressure. Ecosystems close to the mainland are comparatively well studied. However, the edges of the continental shelf and the continental slope have for a long time received comparatively little attention.

Michel Philippens | alphagalileo

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>