Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Marine researchers explore sediment highways


A European team of researchers has demonstrated that sediment is transported to the deep sea via canyons in the seabed. The sediment accumulates in the head of the submarine canyons. At the end of the canyons, mud avalanches disperse into the deep sea. Scientists from the Netherlands Institute for Sea Research (NIOZ) presented their findings at an international congress held from 7 to 10 April 2002.

With bottom landers, onboard the ship R.V. Pelagia, the researchers explored the Nazaré Canyon off the Portuguese coast. This is one of the largest submarine canyons in the world. The Canyon starts at the beach. At a distance of 150 kilometres from the coast it opens out into a deep-sea area, 5 km deep. Locally the canyon cuts more than one kilometre deep into the continental slope. In the floor of the canyon the researchers measured unusually high biochemical activity. The sediment is enriched in organic material, which can serve as food for the rich floor life in the canyon and the deep-sea area. However, the sediment is possibly mixed with chemical pollutants originating from human activity. In addition to this the water in the canyon was noticeably turbid. This indicates an elevated transport of sediment particles. The sediment accumulates rapidly in the canyon. As a result of this the floor becomes unstable. The researchers demonstrated that the accumulated sediment runs off the slope as submarine mud avalanches into the deep-sea area. This happens at intervals of several decades to several centuries. With the rapid growth of the world population, the use of the continental margin (the transition area between the mainland and the open ocean) is quickly increasing. As a result of this marine ecosystems are being subjected to greater pressure. Ecosystems close to the mainland are comparatively well studied. However, the edges of the continental shelf and the continental slope have for a long time received comparatively little attention.

Michel Philippens | alphagalileo

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>