Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals lakes a major source of prehistoric methane

29.10.2007
A team of scientists led by a researcher at the University of Alaska Fairbanks has identified a new likely source of a spike in atmospheric methane coming out of the North during the end of the last ice age.

Methane bubbling from arctic lakes could have been responsible for up to 87 percent of that methane spike, said UAF researcher Katey Walter, lead author of a report printed in the Oct. 26 issue of Science magazine. The findings could help scientists understand how current warming might affect atmospheric levels of methane, a gas that is thought to contribute to climate change.

“It tells us that this isn’t just something that is ongoing now. It would have been a positive feedback to climate warming then, as it is today,” said Walter. “We estimate that as much as 10 times the amount of methane that is currently in the atmosphere will come out of these lakes as permafrost thaws in the future. The timing of this emission is uncertain, but likely we are talking about a time frame of hundreds to thousands of years, if climate warming continues as projected.”

Ice cores from Greenland and Antarctica have shown that during the early Holocene Period--about 14,000 to 11,500 years ago--the levels of methane in the atmosphere rose significantly, Walter said. “They found that an unidentified northern source (of methane) appeared during that time.”

Previous hypotheses suggested that the increase came from gas hydrates or wetlands. This study’s findings indicate that methane bubbling from thermokarst lakes, which are formed when permafrost thaws rapidly, is likely a third and major source.

Walter’s research focused on areas of Siberia and Alaska that, during the last ice age, were dry grasslands atop ice-rich permafrost. As the climate warmed, Walter said, that permafrost thawed, forming thermokarst lakes.

“Lakes really flared up on this icy permafrost landscape, emitting huge amounts of methane,” she said.

As the permafrost around and under the lakes thaws, the organic material in it--dead plants and animals--can enter the lake bottom and become food for the bacteria that produce methane.

“All that carbon that had been locked up in the ground for thousands of years is converted to potent greenhouse gases: methane and carbon dioxide,” Walter said. Walter’s paper hypothesizes that methane from the lakes contributed 33 to 87 percent of the early Holocene methane increase.

To arrive at the hypothesis, Walter and her colleagues traveled to Siberia and northern Alaska to examine lakes that currently release methane. In addition, they gathered samples of permafrost and thawed them in the laboratory to study how much methane permafrost soil can produce immediately after thawing.

“We found that it produced a lot very quickly,” she said.

Finally, she and other researchers studied when existing lakes and lakes in the past formed and found that their formation coincided with the early Holocene Period northern methane spike.

“We came up with a new hypothesis,” she said. “Thermokarst lake formation is a source of atmospheric methane today, but it was even more important during early Holocene warming. This suggests that large releases from lakes may occur again in the future with global warming.”

Co-authors on the paper include Mary Edwards of the University of Southampton and the UAF College of Natural Science and Mathematics; Guido Grosse, an International Polar Year postdoctoral fellow with the UAF Geophysical Institute; Sergey Zimov of the Russian Academy of Sciences; and Terry Chapin of the UAF Institute of Arctic Biology. Funding was provided by the National Science Foundation, the Environmental Protection Agency and the National Aeronautics and Space Administration.

CONTACT: Katey Walter, assistant professor of research, Institute of Northern Engineering, at 907-474-6095 or via e-mail at ftkmw1@uaf.edu. Marmian Grimes, UAF public information officer, at 907-474-7902 or via e-mail at marmian.grimes@uaf.edu.

Marmian Grimes | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>