Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals lakes a major source of prehistoric methane

29.10.2007
A team of scientists led by a researcher at the University of Alaska Fairbanks has identified a new likely source of a spike in atmospheric methane coming out of the North during the end of the last ice age.

Methane bubbling from arctic lakes could have been responsible for up to 87 percent of that methane spike, said UAF researcher Katey Walter, lead author of a report printed in the Oct. 26 issue of Science magazine. The findings could help scientists understand how current warming might affect atmospheric levels of methane, a gas that is thought to contribute to climate change.

“It tells us that this isn’t just something that is ongoing now. It would have been a positive feedback to climate warming then, as it is today,” said Walter. “We estimate that as much as 10 times the amount of methane that is currently in the atmosphere will come out of these lakes as permafrost thaws in the future. The timing of this emission is uncertain, but likely we are talking about a time frame of hundreds to thousands of years, if climate warming continues as projected.”

Ice cores from Greenland and Antarctica have shown that during the early Holocene Period--about 14,000 to 11,500 years ago--the levels of methane in the atmosphere rose significantly, Walter said. “They found that an unidentified northern source (of methane) appeared during that time.”

Previous hypotheses suggested that the increase came from gas hydrates or wetlands. This study’s findings indicate that methane bubbling from thermokarst lakes, which are formed when permafrost thaws rapidly, is likely a third and major source.

Walter’s research focused on areas of Siberia and Alaska that, during the last ice age, were dry grasslands atop ice-rich permafrost. As the climate warmed, Walter said, that permafrost thawed, forming thermokarst lakes.

“Lakes really flared up on this icy permafrost landscape, emitting huge amounts of methane,” she said.

As the permafrost around and under the lakes thaws, the organic material in it--dead plants and animals--can enter the lake bottom and become food for the bacteria that produce methane.

“All that carbon that had been locked up in the ground for thousands of years is converted to potent greenhouse gases: methane and carbon dioxide,” Walter said. Walter’s paper hypothesizes that methane from the lakes contributed 33 to 87 percent of the early Holocene methane increase.

To arrive at the hypothesis, Walter and her colleagues traveled to Siberia and northern Alaska to examine lakes that currently release methane. In addition, they gathered samples of permafrost and thawed them in the laboratory to study how much methane permafrost soil can produce immediately after thawing.

“We found that it produced a lot very quickly,” she said.

Finally, she and other researchers studied when existing lakes and lakes in the past formed and found that their formation coincided with the early Holocene Period northern methane spike.

“We came up with a new hypothesis,” she said. “Thermokarst lake formation is a source of atmospheric methane today, but it was even more important during early Holocene warming. This suggests that large releases from lakes may occur again in the future with global warming.”

Co-authors on the paper include Mary Edwards of the University of Southampton and the UAF College of Natural Science and Mathematics; Guido Grosse, an International Polar Year postdoctoral fellow with the UAF Geophysical Institute; Sergey Zimov of the Russian Academy of Sciences; and Terry Chapin of the UAF Institute of Arctic Biology. Funding was provided by the National Science Foundation, the Environmental Protection Agency and the National Aeronautics and Space Administration.

CONTACT: Katey Walter, assistant professor of research, Institute of Northern Engineering, at 907-474-6095 or via e-mail at ftkmw1@uaf.edu. Marmian Grimes, UAF public information officer, at 907-474-7902 or via e-mail at marmian.grimes@uaf.edu.

Marmian Grimes | EurekAlert!
Further information:
http://www.uaf.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>