Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil record supports evidence of impending mass extinction

24.10.2007
Global temperatures predicted for the coming centuries may trigger a new ‘mass extinction event’, where over 50 per cent of animal and plant species would be wiped out, warn scientists at the Universities of York and Leeds.

The research team has, for the first time, discovered a close association between Earth climate and extinctions in a study that has examined the relationship over the past 520 million years – almost the entire fossil record available.

Matching data sets of marine and terrestrial diversity against temperature estimates, evidence shows that global biodiversity is relatively low during warm ‘greenhouse’ phases and extinctions relatively high, while the reverse is true in cooler ‘icehouse’ phases.

Moreover, future predicted temperatures are within the range of the warmest greenhouse phases that are associated with mass extinction events identified in the fossil record.

The research, published in the latest issue of Proceedings of the Royal Society B., was carried out by University of York student Gareth Jenkins, together with his supervisor, Dr Peter Mayhew, and University of Leeds Professor Tim Benton, both of whom are population ecologists.

Dr Mayhew says: “Our results provide the first clear evidence that global climate may explain substantial variation in the fossil record in a simple and consistent manner. If our results hold for current warming - the magnitude of which is comparable with the long-term fluctuations in Earth climate - they suggest that extinctions will increase.”

Of the five mass extinction events(1), four - including the one that eliminated the dinosaurs 65 million years ago - are associated with greenhouse phases. The largest mass extinction event of all, the end-Permian, occurred during one of the warmest ever climatic phases and saw the estimated extinction of 95 per cent of animal and plant species.

“The long-term association has not been seen before, as previous studies have largely been confined to relatively short geological periods, limited geographical extents and few groups of organisms,” says Professor Benton. “But the evidence is striking.”

David Garner | alfa
Further information:
http://www.york.ac.uk/admin/presspr/pressreleases/massextinctions.htm

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>