Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean CO2 concentration influences climate

24.10.2007
Could the concentration of CO2 in the atmosphere rise more drastically than hitherto assumed? ETH Zurich climatologists recently published their latest findings in the scientific journal "Nature".

The air contains greenhouse gases such as CO2, which are now known to be responsible for global warming because their concentration has risen continu-ously for a number of years. In contrast to the atmosphere, the concentration of CO2 in the oceans is sixty times higher.

In the global carbon cycle the sea ab-sorbs a proportion of the atmospheric CO2 but also releases CO2 into the at-mosphere again. About half of the anthropogenic emission of CO2 is absorbed naturally by the oceans. Thus it is all the more important to understand how the exchange of CO2 between the ocean and the atmosphere functions with regard to a world that is warming up. The newly available study shows that the ocean was able to store more CO2 during the ice age than it can today.

Practically static bodies of water

Together with North American colleagues, an ETH Zurich research team made measurements on sea bed sediments. These sediments originate from moun-tains lying at a depth of about three kilometres below the water surface of the sub-Arctic Pacific Ocean. At that point the water temperatures are close to freezing and the conditions are very stable, because there is practically no mix-ing between the deep bodies of water and the surface water. The circulation of the water is measured using the radio-carbon method, which is based on the radioactive decay of the carbon isotope 14C. Measurements showed that the deep Pacific water has not been at the surface for more than 2,000 years.

Tiny single-celled organisms betray the CO2 level

To find out how the situation has changed compared to the last ice age, the re-searchers studied mud from the sub-Arctic Pacific Ocean lying approximately one metre below the present sea bed and about 20,000 years old. Tiny single-celled organisms with limestone shells known as foraminifera were selected from this mud under a microscope and afterwards measured with mass spec-trometers. These foraminifers locked in the carbon isotope signature of the seawater of their day - like in a time capsule. The research team has now been able to measure the 14C content precisely. This enabled them to show that the water in the ocean depths exchanged less CO2 with the atmosphere than at present.

A sobering result

The team also looked for key indicators that provide some information about the chemical composition of the ice age water. They found unusually clear evidence that this water captured more CO2 from the atmosphere than the water at the present day. The latest research results show that the oceans are generally able to fix more CO2 when they are cold.

Oceans that warm up as a result of climate change release more CO2 into the atmosphere. This discovery has far-reaching consequences for the climate. The ocean warming caused by humans contributes to the formation of additional greenhouse gases, mainly CO2. Consequently the positive feedback with the atmosphere associated with the latter leads to an even greater acceleration in global warming.

Samuel Jaccard, Research Assistant at ETH Zurich and one of the two principal authors of the study thinks that: "With a system as complex as the climate, even if we cannot draw conclusions directly from the natural cold past that are appli-cable to the warm future modified by humans, our results show that anthropo-genic warming causes additional critical feedback on the CO2 balance."

Original paper: Galbraith, E.D., Jaccard, S.L., Pedersen, T.F., Sigman, D.M., Haug, G.H., Cook, M., Southon, J.R., Francois, R. Carbon dioxide release from the North Pacific abyss during the last deglaciation, Nature, 449, 890-894.

Renata Cosby | idw
Further information:
http://samuel.jaccard@erdw.ethz.ch

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>