Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ocean CO2 concentration influences climate

Could the concentration of CO2 in the atmosphere rise more drastically than hitherto assumed? ETH Zurich climatologists recently published their latest findings in the scientific journal "Nature".

The air contains greenhouse gases such as CO2, which are now known to be responsible for global warming because their concentration has risen continu-ously for a number of years. In contrast to the atmosphere, the concentration of CO2 in the oceans is sixty times higher.

In the global carbon cycle the sea ab-sorbs a proportion of the atmospheric CO2 but also releases CO2 into the at-mosphere again. About half of the anthropogenic emission of CO2 is absorbed naturally by the oceans. Thus it is all the more important to understand how the exchange of CO2 between the ocean and the atmosphere functions with regard to a world that is warming up. The newly available study shows that the ocean was able to store more CO2 during the ice age than it can today.

Practically static bodies of water

Together with North American colleagues, an ETH Zurich research team made measurements on sea bed sediments. These sediments originate from moun-tains lying at a depth of about three kilometres below the water surface of the sub-Arctic Pacific Ocean. At that point the water temperatures are close to freezing and the conditions are very stable, because there is practically no mix-ing between the deep bodies of water and the surface water. The circulation of the water is measured using the radio-carbon method, which is based on the radioactive decay of the carbon isotope 14C. Measurements showed that the deep Pacific water has not been at the surface for more than 2,000 years.

Tiny single-celled organisms betray the CO2 level

To find out how the situation has changed compared to the last ice age, the re-searchers studied mud from the sub-Arctic Pacific Ocean lying approximately one metre below the present sea bed and about 20,000 years old. Tiny single-celled organisms with limestone shells known as foraminifera were selected from this mud under a microscope and afterwards measured with mass spec-trometers. These foraminifers locked in the carbon isotope signature of the seawater of their day - like in a time capsule. The research team has now been able to measure the 14C content precisely. This enabled them to show that the water in the ocean depths exchanged less CO2 with the atmosphere than at present.

A sobering result

The team also looked for key indicators that provide some information about the chemical composition of the ice age water. They found unusually clear evidence that this water captured more CO2 from the atmosphere than the water at the present day. The latest research results show that the oceans are generally able to fix more CO2 when they are cold.

Oceans that warm up as a result of climate change release more CO2 into the atmosphere. This discovery has far-reaching consequences for the climate. The ocean warming caused by humans contributes to the formation of additional greenhouse gases, mainly CO2. Consequently the positive feedback with the atmosphere associated with the latter leads to an even greater acceleration in global warming.

Samuel Jaccard, Research Assistant at ETH Zurich and one of the two principal authors of the study thinks that: "With a system as complex as the climate, even if we cannot draw conclusions directly from the natural cold past that are appli-cable to the warm future modified by humans, our results show that anthropo-genic warming causes additional critical feedback on the CO2 balance."

Original paper: Galbraith, E.D., Jaccard, S.L., Pedersen, T.F., Sigman, D.M., Haug, G.H., Cook, M., Southon, J.R., Francois, R. Carbon dioxide release from the North Pacific abyss during the last deglaciation, Nature, 449, 890-894.

Renata Cosby | idw
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>