Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birth of an iceberg

19.10.2007
This animation, comprised of images acquired by Envisat’s Advanced Synthetic Aperture Radar (ASAR) instrument, shows the breaking away of a giant iceberg from the Pine Island Glacier in West Antarctica. Spanning 34 km in length by 20 km in width, the new iceberg covers an area nearly half the size of Greater London.

The animation highlights the movement in the area between September 2006 and October 2007. The Pine Island Glacier is visible stretching from the right of the image to the centre. The tongue of Pine Island is shown moving inland between September 2006 and March 2007. Between April and May 2007, the detached iceberg in front of Pine Island moves significantly. Also in May 2007, a crack in Pine Island becomes visible. By October, the new iceberg has completely broken away.

Several different processes can cause an iceberg to form, or ‘calve’, such as action from winds and waves, the ice shelf grows too large to support part of itself or a collision with an older iceberg. Since Pine Island Glacier was already floating before it calved, it will not cause any rise in the world sea level.

Iceberg calving like this occurs in Antarctica each year and is part of the natural lifecycle of the ice sheet. A 34-year long study of the glacier has shown that a large iceberg breaks off roughly every 5-10 years. The last event was in 2001.

Pine Island – the largest glacier in the West Antarctic Ice Sheet (WAIS) – is of great interest to scientists because it transports ice from the deep interior of the WAIS to the ocean and its flow rate has accelerated over the past 15 years.

The Pine Island Glacier is up to 2500 m thick with a bedrock over 1500 m below sea level and comprises 10 percent of the WAIS. According to a study by scientists at the British Antarctic Survey (BAS) and University College London (UCL) using ESA's ERS satellite data, a loss of 31-cubic km of ice from the WAIS’s interior from 1992 to 2001 was pinpointed to the Pine Island Glacier.

The thinning caused the glacier to retreat by over 5 km inland, supporting the argument that small changes at the coast of the Antarctic continent - such as the effects of global warning - may be transmitted rapidly inland leading to an acceleration of sea level rise.

Although these long-term regional changes are a cause for concern, the present iceberg calving event does not in itself signal a significant change in the WAIS. Over the last 15 years, the glacier front has advanced seawards at a rate of 3 km/year, so the calving of a 20 km-wide iceberg has simply shifted the glacier front back close to where it was after the last calving event in 2001.

The new iceberg was spotted by scientists at BAS while studying satellite images collected from Envisat using the Polar View monitoring programme. Since 2006, ESA has supported Polar View, a satellite remote-sensing programme funded through the Global Monitoring for Environment and Security (GMES) Service Element (GSE) that focuses on the Arctic and the Antarctic.

GMES responds to Europe’s needs for geo-spatial information services by bringing together the capacity of Europe to collect and manage data and information on the environment and civil security, for the benefit of European citizens. As the main partner to the European Commission in GMES, ESA is the implementing agency for the GMES Space Component, which will fulfil the space-based observation requirements in response to European policy priorities.

The GSE has been preparing user organisations in Europe and worldwide for GMES by enabling them to receive and evaluate information services derived from existing Earth Observation (EO) satellites since 2002.

ASAR acquired these images working in Wide Swath Mode (WSM), providing spatial resolution of 150 metres. ASAR can pierce through clouds and local darkness and is capable of differentiating between different types of ice.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM9C9JJX7F_index_0.html

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>