Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite methods for monitoring volcanic activity in the Andes Cordillera

08.10.2007
The central part of the Andes situated between southern Peru and Chile bears 50 active or potentially volcanoes, spread along a 1500 km-long arc. These volcanic structures mostly rise to between 4000 and 7000 m, are very remote with abrupt slopes and are often cloaked in snow.

Few studies have been made on them as such conditions make field surveying extremely difficult. A team of IRD researchers working in partnership with the University of Chile (Santiago) and the Observatoire de Physique du Globe of Clermont-Ferrand (1) focused special attention on the Lastarria-Cordon del Azufre volcanic complex. With a surface area of 1600 km², it is situated in the central Andes Cordillera at the border between Argentina and Chile near Antofagasta.

Research projects on deformations of the earth crust, conducted in this region between 1992 and 2000 by a North American team, had led to the detection of a long wavelength signal over the area’s topography, extracted from analysis of data collected by the European Space Agency (ESA) satellite ERS-1. This deformation would correspond to crustal inflation affecting the whole Lastarria-Cordon del Azufre complex. Although this volcano is not considered as active, as the last eruption dates back 9000 years, such inflation could express an underlying activity related to the dynamics of a functioning magma chamber.

IRD geophysicists continued such investigations on the deformations at work in the Lastarria-Cordon del Azufre complex in 2003, by using radar interferometry. This measurement method is based on the superimposition of two satellite radar images of the same geographical area taken at different times. The resulting differential signal between the images, termed the interferogram, provides a way of detecting possible deformation of the earth crust. The value of the wavelength associated with it is proportional to the depth of the source of deformation, down in the lithosphere. For this study, the scientists made use of data acquired by ENVISAT, a satellite ESA launched in 2002. Its ASAR (Advanced Synthetic Aperture Radar) sensor enables it, like its predecessors ERS-l, ERS-2, to perform radar imagery in any weathers. This attribute proves particularly useful for surveillance of the mountainous regions of Latin America.

Between March 2003 and June 2005, ENVISAT recorded a time-series of eight images of the Lastarria-Cordon del Azufre volcanic complex. The IRD team used special software to process the images and obtained 28 interferograms. This data set led to measurement of inflation of about a centimetre affecting the crust over the whole of the area studied . As in the North American study, a long wavelength regional-scale signal was found, covering a surface area of about 45 km long by 35 km wide corresponding to the entire volcanic complex. A short wavelength signal not previously identified was also revealed, but unlike the first, it was located at the smaller scale of the Lastarria volcano only.

Two distinct hypotheses are envisaged to explain the emission of these two wavelengths. As the inflation measured at regional scale corresponds to a long wavelength signal, it has a fairly deep source, estimated by the geophysicists at between 7 and 15 km down. An inflation located at such a depth is highly likely to be generated by magmatic activity. The source of the short wavelength signal, located at about 1000 m beneath the summit of the Lastarria volcano, is more uncertain, however. Indications nevertheless suggest a link with the circulation of hydrothermal fluids.

Future forecasting of the possible evolution of the Lastarria-Cordon del Azufre volcanic complex requires the acquisition of field data to complement the satellite data obtained. GPS measurements especially will enable researchers to check if these inflation effects measured using satellite data effectively correspond to movements of the earth crust. The hope is to obtain further information on changes of mass or density at depth using gravimetry, a geophysical method used for detecting the spatial and temporal variations of the gravity field. Thus, a modification of gravity combined with a displacement of the terrestrial crust could indicate a filling or an emptying of a magma chamber and therefore confirm an underlying volcanic activity. If this turned out to be true, the Lastatria-Cordon del Azufre volcanic complex would be the only area under the Andes where the formation of large magma reservoirs has been demonstrated. In the future, such observation methods could be applied to studying volcanic activity in many regions, like the Andean Cordillera, where access is difficult and thus make the surveillance of volcanic structures as effective as possible.

Grégory Fléchet - DIC :
(1) This research was conducted in partnership with several laboratories in France (Institut de Physique du Globe de Paris, Université de Clermont-Ferrand, Université de Toulouse, Université de Savoie), in Chile (Universidad de Chile, Sernageomin), Ecuador (Escuela Politecnica Nacional) and Peru (Instituto Geofisico del Perú, Conida).

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/2007/fas275.pdf

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>