Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite methods for monitoring volcanic activity in the Andes Cordillera

08.10.2007
The central part of the Andes situated between southern Peru and Chile bears 50 active or potentially volcanoes, spread along a 1500 km-long arc. These volcanic structures mostly rise to between 4000 and 7000 m, are very remote with abrupt slopes and are often cloaked in snow.

Few studies have been made on them as such conditions make field surveying extremely difficult. A team of IRD researchers working in partnership with the University of Chile (Santiago) and the Observatoire de Physique du Globe of Clermont-Ferrand (1) focused special attention on the Lastarria-Cordon del Azufre volcanic complex. With a surface area of 1600 km², it is situated in the central Andes Cordillera at the border between Argentina and Chile near Antofagasta.

Research projects on deformations of the earth crust, conducted in this region between 1992 and 2000 by a North American team, had led to the detection of a long wavelength signal over the area’s topography, extracted from analysis of data collected by the European Space Agency (ESA) satellite ERS-1. This deformation would correspond to crustal inflation affecting the whole Lastarria-Cordon del Azufre complex. Although this volcano is not considered as active, as the last eruption dates back 9000 years, such inflation could express an underlying activity related to the dynamics of a functioning magma chamber.

IRD geophysicists continued such investigations on the deformations at work in the Lastarria-Cordon del Azufre complex in 2003, by using radar interferometry. This measurement method is based on the superimposition of two satellite radar images of the same geographical area taken at different times. The resulting differential signal between the images, termed the interferogram, provides a way of detecting possible deformation of the earth crust. The value of the wavelength associated with it is proportional to the depth of the source of deformation, down in the lithosphere. For this study, the scientists made use of data acquired by ENVISAT, a satellite ESA launched in 2002. Its ASAR (Advanced Synthetic Aperture Radar) sensor enables it, like its predecessors ERS-l, ERS-2, to perform radar imagery in any weathers. This attribute proves particularly useful for surveillance of the mountainous regions of Latin America.

Between March 2003 and June 2005, ENVISAT recorded a time-series of eight images of the Lastarria-Cordon del Azufre volcanic complex. The IRD team used special software to process the images and obtained 28 interferograms. This data set led to measurement of inflation of about a centimetre affecting the crust over the whole of the area studied . As in the North American study, a long wavelength regional-scale signal was found, covering a surface area of about 45 km long by 35 km wide corresponding to the entire volcanic complex. A short wavelength signal not previously identified was also revealed, but unlike the first, it was located at the smaller scale of the Lastarria volcano only.

Two distinct hypotheses are envisaged to explain the emission of these two wavelengths. As the inflation measured at regional scale corresponds to a long wavelength signal, it has a fairly deep source, estimated by the geophysicists at between 7 and 15 km down. An inflation located at such a depth is highly likely to be generated by magmatic activity. The source of the short wavelength signal, located at about 1000 m beneath the summit of the Lastarria volcano, is more uncertain, however. Indications nevertheless suggest a link with the circulation of hydrothermal fluids.

Future forecasting of the possible evolution of the Lastarria-Cordon del Azufre volcanic complex requires the acquisition of field data to complement the satellite data obtained. GPS measurements especially will enable researchers to check if these inflation effects measured using satellite data effectively correspond to movements of the earth crust. The hope is to obtain further information on changes of mass or density at depth using gravimetry, a geophysical method used for detecting the spatial and temporal variations of the gravity field. Thus, a modification of gravity combined with a displacement of the terrestrial crust could indicate a filling or an emptying of a magma chamber and therefore confirm an underlying volcanic activity. If this turned out to be true, the Lastatria-Cordon del Azufre volcanic complex would be the only area under the Andes where the formation of large magma reservoirs has been demonstrated. In the future, such observation methods could be applied to studying volcanic activity in many regions, like the Andean Cordillera, where access is difficult and thus make the surveillance of volcanic structures as effective as possible.

Grégory Fléchet - DIC :
(1) This research was conducted in partnership with several laboratories in France (Institut de Physique du Globe de Paris, Université de Clermont-Ferrand, Université de Toulouse, Université de Savoie), in Chile (Universidad de Chile, Sernageomin), Ecuador (Escuela Politecnica Nacional) and Peru (Instituto Geofisico del Perú, Conida).

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/2007/fas275.pdf

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>