Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Life Originated In Space

15.04.2002


Life originated on the Earth more than 3.5 billion years ago. However, the scientists are still disputing over the possible sources of the life origin. The matter is that life on our planet evolved from the molecular level to the level of bacteria organisms within 0.5 - 1 billion years, this period being very short for such an important evolutionary step. The researchers are still racking the brains over this mystery. One of the popular hypothesis asserts that some germs of life have been brought to the Earth from space. But what exactly could have been brought from space and how could the germs have originated in space?



E.A. Kuzicheva and N.B.Gontareva, research assistants from the Institute of Cytology, Russian Academy of Sciences, have confirmed a possibility of abiogenous synthesis of complex organic compounds (monomeric units of nucleic acids) on the surface of comets, asteroids, meteorites and space dust particles in the outer space. Therefore, it is possible that the above monomeric units of nucleic acids could have got to the Earth and thus could have significantly reduced the time period of the evolution process. On the surface of space bodies the scientists have found all kinds of various organic molecules (amino acids, organic acids, sugars etc.) and the components required for their synthesis. Obviously, it is there that organic substances are being synthesised, but the researchers can not be sure of this fact, until the experiments confirm their assumptions. The scientists from St. Petersburg reproduced synthesis of one of the DNA components - 5`-adenosine monophosphate (5`-AMP) under the conditions specially designed to simulate the space environment. In order to synthesise 5`-AMP it is required to combine adenosine and inorganic phosphate. On the Earth the reaction goes in the solution, but there are no solvents whatsoever in space, therefore the researchers dried them in the air and got a pellicle. Synthesis requires energy. The major source of energy in the outer space both at present and in the prebiotic period of the Earth history has been the solar ultraviolet radiation of different wavelengths. Therefore, the pellicles were irradiated by a powerful ultraviolet lamp. Naturally, the synthesis was carried out in vacuum, and the researchers used the lunar soil, delivered to the Earth by the `Moon-16` station from the Sea of Abundance, as a model of the comet, meteorite, interplanetary or cosmic dust. The soil represented basaltic dust of the dark-grey colour, the diameter of its particles being less than 0.2 millimetres.

After 7-9 hours of ultraviolet irradiation of the dry pellicles the scientists acquired several compounds, mainly 5`-AMP, one of the DNA/RNA monomers. The energy of radiation does not promote synthesis alone, it also facilitates decomposition of the initial and newly-synthesised compounds, the more powerful the radiation is, the more extensively the decomposition goes. However, the lunar soil provided some protection. It has appeared that a small pinch of the lunar soil protects organic substances from the destructive ultraviolet impact - the lunar soil helps to increase the 5`-AMP yield by 2.7 times.


The researchers have made a conclusion that the organic compounds synthesis could have happened in the outer space environment. The synthesis could have taken place on the surface of space bodies at the initial phases of the solar system formation, along with that the chemical evolution (formation and selection of complex molecules) could have started in space. By the time the Earth was formed the chemical evolution might have approached the phase to be followed by the biological evolution. That implies that life on the Earth most probably did not start from the elementary organic molecules synthesis, but commenced from the polymers formation phase or from a further stage. Hopefully, the above assumptions will help the scientists to deeper penetrate into the mystery of the accelerated development of life on the Earth when the latter was quite a `young` planet.

Natalia Reznik | alphagalileo

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>