Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic sea ice shatters record low: diminished ice leads to Northwest Passage opening

05.10.2007
University of Colorado's National Snow and Ice Data Center says Arctic sea ice extent may have fallen by 50 percent since 1950s

Arctic sea ice during the 2007 melt season plummeted to the lowest levels since satellite measurements began in 1979, according to researchers at the University of Colorado at Boulder's National Snow and Ice Data Center.

The average sea ice extent for the month of September was 1.65 million square miles (4.28 million square kilometers), the lowest September on record, shattering the previous record for the month by 23 percent, which was set in 2005. At the end of the melt season, September 2007 sea ice was 39 percent below the long-term average from 1979 to 2000.

If ship and aircraft records from before the satellite era are taken into account, sea ice may have fallen by as much as 50 percent from the 1950s. The September rate of sea ice decline since 1979 is now more than 10 percent per decade, said the CU-Boulder research team.

NSIDC is part of the Cooperative Institute for Research in Environmental Sciences, a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration.

Arctic sea ice has long been recognized as a sensitive climate indicator, said CU-Boulder Research Professor Mark Serreze of CIRES and NSIDC. "Computer projections have consistently shown that as global temperatures rise, the sea ice cover will begin to shrink," he said. "While a number of natural factors have certainly contributed to the overall decline in sea ice, the effects of greenhouse warming are now coming through loud and clear."

One factor that contributed to this fall's extreme decline was that the ice was entering the melt season in an already weakened state, said CIRES Research Associate Julienne Stroeve of NSIDC. "The spring of 2007 started out with less ice than normal, as well as thinner ice. Thinner ice takes less energy to melt than thicker ice, so the stage was set for low levels of sea ice this summer."

Another factor that conspired to accelerate the ice loss this summer was an unusual atmospheric pattern, with persistent high atmospheric pressures over the central Arctic Ocean and lower pressures over Siberia. The scientists noted that skies were fairly clear under the high-pressure cell, promoting strong melt.

At the same time, the pattern of winds pumped warm air into the region. While the warm winds fostered further melt, they also helped push ice away from the Siberian shore. "While the decline of the ice started out fairly slowly in spring and early summer, it accelerated rapidly in July," said Walt Meier, a CIRES researcher at NSIDC. "By mid-August, we had already shattered all previous records for ice extent."

Arctic sea ice receded so much that the fabled Northwest Passage completely opened for the first time in human memory, said the team. Explorers and other seafarers had long recognized that this passage, through the straits of the Canadian Arctic Archipelago, represented a potential shortcut from the Pacific to the Atlantic.

Roald Amundsen began the first successful navigation of the route starting in 1903. It took his hardy group two-and-a-half years to leapfrog through narrow passages of open water, with their ship locked in the frozen ice through two cold, dark winters. More recently, icebreakers and ice-strengthened ships have on occasion traversed the normally ice-choked route.

However, by the end of the 2007 melt season, a standard ocean-going vessel could have sailed smoothly through. On the other hand, the Northern Sea Route, a shortcut along the Eurasian coast that is often at least partially open, was completely blocked by a band of ice this year, said the researchers.

In addition to the record-breaking retreat of sea ice, the team also noted that the date of the lowest sea ice extent, or the absolute minimum, has shifted to later in the year. This year, the five-day running minimum occurred on Sept 16. From 1979 to 2000, the minimum usually occurred on Sept. 12.

CIRES Research Associate and NSIDC Senior Scientist Ted Scambos said, "What we've seen this year fits the profile of lengthening melt seasons, which is no surprise. As the system warms up, spring melt will tend to come earlier and autumn freezing will begin later."

Changes in sea ice extent, timing, ice thickness and seasonal fluctuations are already having an impact on the people, plants, and animals that live in the Arctic. "Local people who live in the region are noticing the changes in sea ice," said Arctic resident Shari Gearheard of CU-Boulder's NSIDC. "The earlier break up and later freeze up affect when and where people can go hunting, as well as safety for travel."

The CU-Boulder research team monitors and studies Arctic sea ice year round, analyzing satellite data and seeking to understand the regional changes and complex feedbacks, said Serreze. "The sea ice cover is in a downward spiral and may have passed the point of no return," he said. "'As the years go by, we are losing more and more ice in summer, and growing back less and less ice in winter.

"We may well see an ice-free Arctic Ocean in summer within our lifetimes," said Serreze, noting scientists agree such an event could occur by 2030. "The implications for global climate, as well as Arctic animals and people, are disturbing."

Stephanie Renfrow | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>