Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Traces of the deluge

Apparently, disasters resembling the biblical Deluge often happened in Eurasia when glaciers occupied more space than they do now. In the north, the glacier served as a natural dam for Siberian rivers, and gigantic lakes were formed in northern Asia. In the mountains, glaciers formed dammed basins, which periodically burst and flooded vast territories. Huge water and mud flows rushed out at the speed of 20 meters per second.

Researchers of the Irkutsk State University and Institutes of the Earth’s Crust and Geochemistry (Siberian Branch, Russian Academy of Sciences) have recently discovered traces of a catastrophic hydrobreaking in the middle flow of the Onon river, in Tchasuchey deep (Transbaikalia). They made the discovery having investigated the relief of this area with the help of GoogleEarth, so anyone can look at evidence of the biblical-scale flood by typing “barun torey” (Barun Torey lake in the Chita Region) in the search line and by scrutinizing the locality stretching towards the north-west of the water body approximately through to Tchasuchey.

The point is in the relief of Tchasuchey deep - hills, mounds and ridges, shallow gullies and lakes in the shallow gullies are oriented from the north-west to south-east in that region. Linearly oriented ridge and shallow gullies system is the sign that once a water flow used to rush here. At the northern boundary of the deep, the lakes are big, but within its boundaries they are shallow. The majority of the lakes are oval and round, but few having an elongated shape are pulled out strictly in the direction from the north-west towards the south-east.

Geologists have been debating so far about the origin of ridges and mounds oriented in one direction – if they are of aeolian origin (or wind origin, when the wind sweeps dunes together), or of fluvial origin – when the same is done by running water. The Irkutsk researchers believe that a catastrophic debacle of a gigantic pond took place there, probably this is connected with Selengin Lake that existed in former times and occupied a major part of mainland towards the east of Baikal. The fact that the shallow gully zones alternate with the mound zones is to the credit of the above hypothesis. Hills and ridges prevail in the middle part of Tchasuchey deep, but in the north and in the south, near Barun Torey Lake, shallow gullies and deeps are predominant.

Such geological structures continue up to Harbin and Changchun in China, slightly “turning” to the north. Judging by the relief in the region of China, it is apparent that the flow broke down into several smaller ones.

It is interesting to note that positive forms of the relief are similar to “baire hillocks” in the Caspian Sea region. The same parallel chains of hills consisting of sand and clay stretch in latitudinal direction along Manych shallow gully, on the spot of hypothetical strait between the Caspian and the Black Sea. They were first described by C. Baire and are called after him. Similar formations also exist in Western Siberia where water inrush went from the east to the west. So, it means that “the Deluges” were not infrequent during the glaciation era.

Nadezda Markina | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>