Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic heat wave stuns climate change researchers

28.09.2007
Unprecedented warm temperatures in the High Arctic this past summer were so extreme that researchers with a Queen’s University-led climate change project have begun revising their forecasts.

“Everything has changed dramatically in the watershed we observed,” reports Geography professor Scott Lamoureux, the leader of an International Polar Year project announced yesterday in Nunavut by Indian and Northern Affairs Minister Chuck Strahl. “It’s something we’d envisioned for the future – but to see it happening now is quite remarkable.”

One of 44 Canadian research initiatives to receive a total of $100 million (IPY) research funding from the federal government, Dr. Lamoureux’s new four-year project on remote Melville Island in the northwest Arctic brings together scientists and educators from three Canadian universities and the territory of Nunavut. They are studying how the amount of water will vary as climate changes, and how that affects the water quality and ecosystem sustainability of plants and animals that depend on it.

The information will be key to improving models for predicting future climate change in the High Arctic, which is critical to the everyday living conditions of people living there, especially through the lakes and rivers where they obtain their drinking water.

Other members of the research team include, from the Queen’s Geography Department: Paul Treitz, Melissa Lafreniere and Neal Scott; Myrna Simpson and Andre Simpson from U of T; and Pierre Francus from INRS-ETE, Quebec. Linda Lamoureux of Kingston’s Martello School will work with the scientists to develop learning tools for schools in the north.

From their camp on Melville Island last July, where they recorded air temperatures over 20ºC (in an area with July temperatures that average 5ºC), the team watched in amazement as water from melting permafrost a metre below ground lubricated the topsoil, causing it to slide down slopes, clearing everything in its path and thrusting up ridges at the valley bottom “that piled up like a rug,” says Dr. Lamoureux, an expert in hydro-climatic variability and landscape processes. “The landscape was being torn to pieces, literally before our eyes. A major river was dammed by a slide along a 200-metre length of the channel. River flow will be changed for years, if not decades to come.”

Comparing this summer’s observations against aerial photos dating back to the 1950s, and the team’s monitoring of the area for the past five years, the research leader calls the present conditions “unprecedented” in scope and activity. What’s most interesting, he says, is that their findings represent the impact of just one exceptional summer.

“A considerable amount of vegetation has been disturbed and we observed a sharp rise in erosion and a change in sediment load in the river,” Dr. Lamoureux notes. “With warmer conditions and greater thaw depth predicted, the cumulative effect of this happening year after year could create huge problems for both the aquatic and land populations. This kind of disturbance also has important consequences for existing and future infrastructure in the region, like roads, pipelines and air strips.”

If this were to occur in more inhabited parts of Canada, it would be “catastrophic” in terms of land use and resources, he continues. “It would be like taking an area the size of Kingston and having 15 per cent of it disappear into Lake Ontario.”

The Queen’s-led project is working with other IPY research groups including: Arctic HYDRA, an international group investigating the impact of climate change on water in the Arctic; Science Pub, a Norwegian group working on broad research from science to public education about the impacts of global warming; and CiCAT, a University of British Columbia-led group of 48 researchers investigating the impacts of climate change on tundra vegetation.

International Polar Year (IPY) is the largest-ever international program of coordinated scientific research focused on the Arctic and Antarctic regions and the first in 50 years.

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>