Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic heat wave stuns climate change researchers

28.09.2007
Unprecedented warm temperatures in the High Arctic this past summer were so extreme that researchers with a Queen’s University-led climate change project have begun revising their forecasts.

“Everything has changed dramatically in the watershed we observed,” reports Geography professor Scott Lamoureux, the leader of an International Polar Year project announced yesterday in Nunavut by Indian and Northern Affairs Minister Chuck Strahl. “It’s something we’d envisioned for the future – but to see it happening now is quite remarkable.”

One of 44 Canadian research initiatives to receive a total of $100 million (IPY) research funding from the federal government, Dr. Lamoureux’s new four-year project on remote Melville Island in the northwest Arctic brings together scientists and educators from three Canadian universities and the territory of Nunavut. They are studying how the amount of water will vary as climate changes, and how that affects the water quality and ecosystem sustainability of plants and animals that depend on it.

The information will be key to improving models for predicting future climate change in the High Arctic, which is critical to the everyday living conditions of people living there, especially through the lakes and rivers where they obtain their drinking water.

Other members of the research team include, from the Queen’s Geography Department: Paul Treitz, Melissa Lafreniere and Neal Scott; Myrna Simpson and Andre Simpson from U of T; and Pierre Francus from INRS-ETE, Quebec. Linda Lamoureux of Kingston’s Martello School will work with the scientists to develop learning tools for schools in the north.

From their camp on Melville Island last July, where they recorded air temperatures over 20ºC (in an area with July temperatures that average 5ºC), the team watched in amazement as water from melting permafrost a metre below ground lubricated the topsoil, causing it to slide down slopes, clearing everything in its path and thrusting up ridges at the valley bottom “that piled up like a rug,” says Dr. Lamoureux, an expert in hydro-climatic variability and landscape processes. “The landscape was being torn to pieces, literally before our eyes. A major river was dammed by a slide along a 200-metre length of the channel. River flow will be changed for years, if not decades to come.”

Comparing this summer’s observations against aerial photos dating back to the 1950s, and the team’s monitoring of the area for the past five years, the research leader calls the present conditions “unprecedented” in scope and activity. What’s most interesting, he says, is that their findings represent the impact of just one exceptional summer.

“A considerable amount of vegetation has been disturbed and we observed a sharp rise in erosion and a change in sediment load in the river,” Dr. Lamoureux notes. “With warmer conditions and greater thaw depth predicted, the cumulative effect of this happening year after year could create huge problems for both the aquatic and land populations. This kind of disturbance also has important consequences for existing and future infrastructure in the region, like roads, pipelines and air strips.”

If this were to occur in more inhabited parts of Canada, it would be “catastrophic” in terms of land use and resources, he continues. “It would be like taking an area the size of Kingston and having 15 per cent of it disappear into Lake Ontario.”

The Queen’s-led project is working with other IPY research groups including: Arctic HYDRA, an international group investigating the impact of climate change on water in the Arctic; Science Pub, a Norwegian group working on broad research from science to public education about the impacts of global warming; and CiCAT, a University of British Columbia-led group of 48 researchers investigating the impacts of climate change on tundra vegetation.

International Polar Year (IPY) is the largest-ever international program of coordinated scientific research focused on the Arctic and Antarctic regions and the first in 50 years.

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>