Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

North America's northernmost lake affected by global warming

27.09.2007
Analyses conducted by researchers from Université Laval’s Center for Northern Studies reveal that the continent’s northernmost lake is affected by climate change.

In an article to be published in the September 28 edition of Geophysical Research Letters, the international research team led by Université Laval scientists Warwick Vincent and Reinhard Pienitz reports that aquatic life in Ward Hunt Lake, a body of water located on a small island north of Ellesmere Island in the Canadian Arctic, has undergone major transformations within the last two centuries. The speed and range of these transformations—unprecedented in the lake’s last 8,000 years—suggest that climate change related to human activity could be at the source of this phenomenon.

The researchers’ conclusions are based on the analysis of a sediment core extracted in the center of Ward Hunt Lake in August 2003. This 18 centimeter long sediment core containing algae pigments and diatom remnants was used by the researchers as a biological archive in order to determine the diversity and abundance of aquatic life-forms in the lake over the last 8,450 years.

Analysis of the deepest layers of sediment revealed a very small number of algae as well as only minor variations in concentration. However, the top two centimeters of the core, which correspond to the last 200 years, showed abrupt changes in the lake’s algae population: during that period, chlorophyll a concentration, a pigment found in every species in the lake, increased by a factor of 500. A type of diatom typical of very cold environments also made its first appearance during the same period. “The absence of diatoms and the low pigment concentration below the top 2.5 centimeters of the core suggest that the lake was permanently frozen in the past,” explains lead author and Center for Northern Studies researcher Dermot Antoniades.

Located on the 83rd parallel in the Quttinirpaaq (meaning “top of the world” in Inuktitut) National Park, Ward Hunt Island is completely surrounded by ice. The lake itself is permanently covered by a 4-meter layer of ice, except for a small peripheral zone that thaws out during a few weeks every summer. “This is of course an extreme environment for living organisms, but our data indicate that current conditions make the lake a more favorable location for algae growth than it was in the past,” points out Antoniades. “We cannot claim with certainty that these changes were brought on by human activity, but natural variations observed over the last millennia were never so abrupt and extensive,” concludes the researcher.

In addition to Antoniades, Vincent, and Pienitz, the article is co-authored by Catherine Crawley from the University of Toronto, Marianne Douglas from the University of Alberta, Dale Andersen from the Center for the Study of Life in the Universe (USA), Peter Doran at the University of Illinois in Chicago (USA), Ian Hawes from the National Institute of Water and Atmospheric Research (New Zealand), and Wayne Pollard from McGill University.

This study was conducted as part of the ArcticNet program, which brings together scientists and managers in the natural, human health and social sciences with their partners in Inuit organizations, northern communities, federal and provincial agencies and the private sector to study the impacts of climate change in the coastal Canadian Arctic.

Jean-François Huppé | EurekAlert!
Further information:
http://www.ulaval.ca

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>