Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life-giving rocks stop the earth from becoming a barren planet

27.09.2007
If our planet did not have the ability to store oxygen in the deep reaches of its mantle there would probably be no life on its surface. This is the conclusion reached by scientists at the University of Bonn who have subjected the mineral majorite to close laboratory examination.

Majorite normally occurs only at a depth of several hundred kilometres – under very high pressures and temperatures. The Bonn researchers have now succeeded in demonstrating that, under these conditions, the mineral stores oxygen and performs an important function as an oxygen reservoir.

Near the earth's surface the structure breaks down, releasing oxygen, which then binds with hydrogen from the earth's interior to form water. Without this mechanism our "Blue Planet" might well be as dry and inhospitable as Mars. The findings of the Bonn-based scientists have been published in the journal "Nature" (doi:10.1038/nature06183).

The proverbial "solid ground" under our feet is actually in constant flux. At the boundaries between the tectonic plates – in what are called the subduction zones – this seemingly solid ground is drawn down many hundreds of kilometres into the hot interior. As the material descends it takes with it oxygen, which is bound as iron oxide in the earth's mantle – oxygen that derives from the dim distant beginnings of the universe.

Far below the earth's surface high pressures and temperatures prevail. As the mantle material melts the iron oxide undergoes a chemical metamorphosis in which its oxygen component becomes, in a sense, more reactive. Moreover, it changes its medium of transportation, now being incorporated into the exotic mineral majorite which only occurs at these depths. And, as Professor Dr. Christian Ballhaus from the Mineralogical Institute at the Bonn University explains, "The higher the pressure, the more oxygen can be stored by majorite.".

Oxygen takes the elevator

We can envisage the majorite as operating like an elevator for oxygen. But this time it moves in the opposite direction: the mineral rises like warm air above a heater. In fact, the experts talk here about "convection". However, nearing the earth's surface the pressure in the mantle becomes too weak to maintain the majorite, which then decomposes. "That's where the stored oxygen is released," notes Ballhaus, whose team is the first to investigate this mechanism under laboratory conditions. "Near the surface it is made available for all the oxidation reactions that are essential for life on earth."

In particular, the earth constantly exudes hydrogen, which combines with this oxygen to form water. Without the "oxygen elevator" in its mantle the earth would probably be a barren planet hostile to life. "According to our findings, planets below a certain size hardly have any chance of forming a stable atmosphere with a high water content," points out Arno Rohrbach, doctoral student in the research team at the Mineralogical Institute. "The pressure in their mantle is just not high enough to store sufficient oxygen in the rock and release it again at the surface."

Bastion against solar wind

The bigger the planet, the greater is its capacity to store heat; and, correspondingly, the longer-lasting and more intensive is the convection in its crust. Mars, for example, with a diameter of about 7,000 kilometres (the earth's diameter measures 12,700 km) cooled down long ago to a level at which there is no longer any movement in its mantle. "Its crust has therefore lost the ability to transport oxygen and maintain a lasting water-rich atmosphere," Professor Ballhaus elucidates.

In other respects, too, the size of a planet is decisive for the formation of an atmosphere. Only if temperatures in a planet's interior are high enough for it to have a fluid metal core can it develop a magnetic field. The magnetic field operates like a bastion in the face of solar winds. Over time, these winds would otherwise simply blow the atmosphere away.

Arno Rohrbach | alfa
Further information:
http://www.uni-bonn.de

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>