Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life-giving rocks stop the earth from becoming a barren planet

27.09.2007
If our planet did not have the ability to store oxygen in the deep reaches of its mantle there would probably be no life on its surface. This is the conclusion reached by scientists at the University of Bonn who have subjected the mineral majorite to close laboratory examination.

Majorite normally occurs only at a depth of several hundred kilometres – under very high pressures and temperatures. The Bonn researchers have now succeeded in demonstrating that, under these conditions, the mineral stores oxygen and performs an important function as an oxygen reservoir.

Near the earth's surface the structure breaks down, releasing oxygen, which then binds with hydrogen from the earth's interior to form water. Without this mechanism our "Blue Planet" might well be as dry and inhospitable as Mars. The findings of the Bonn-based scientists have been published in the journal "Nature" (doi:10.1038/nature06183).

The proverbial "solid ground" under our feet is actually in constant flux. At the boundaries between the tectonic plates – in what are called the subduction zones – this seemingly solid ground is drawn down many hundreds of kilometres into the hot interior. As the material descends it takes with it oxygen, which is bound as iron oxide in the earth's mantle – oxygen that derives from the dim distant beginnings of the universe.

Far below the earth's surface high pressures and temperatures prevail. As the mantle material melts the iron oxide undergoes a chemical metamorphosis in which its oxygen component becomes, in a sense, more reactive. Moreover, it changes its medium of transportation, now being incorporated into the exotic mineral majorite which only occurs at these depths. And, as Professor Dr. Christian Ballhaus from the Mineralogical Institute at the Bonn University explains, "The higher the pressure, the more oxygen can be stored by majorite.".

Oxygen takes the elevator

We can envisage the majorite as operating like an elevator for oxygen. But this time it moves in the opposite direction: the mineral rises like warm air above a heater. In fact, the experts talk here about "convection". However, nearing the earth's surface the pressure in the mantle becomes too weak to maintain the majorite, which then decomposes. "That's where the stored oxygen is released," notes Ballhaus, whose team is the first to investigate this mechanism under laboratory conditions. "Near the surface it is made available for all the oxidation reactions that are essential for life on earth."

In particular, the earth constantly exudes hydrogen, which combines with this oxygen to form water. Without the "oxygen elevator" in its mantle the earth would probably be a barren planet hostile to life. "According to our findings, planets below a certain size hardly have any chance of forming a stable atmosphere with a high water content," points out Arno Rohrbach, doctoral student in the research team at the Mineralogical Institute. "The pressure in their mantle is just not high enough to store sufficient oxygen in the rock and release it again at the surface."

Bastion against solar wind

The bigger the planet, the greater is its capacity to store heat; and, correspondingly, the longer-lasting and more intensive is the convection in its crust. Mars, for example, with a diameter of about 7,000 kilometres (the earth's diameter measures 12,700 km) cooled down long ago to a level at which there is no longer any movement in its mantle. "Its crust has therefore lost the ability to transport oxygen and maintain a lasting water-rich atmosphere," Professor Ballhaus elucidates.

In other respects, too, the size of a planet is decisive for the formation of an atmosphere. Only if temperatures in a planet's interior are high enough for it to have a fluid metal core can it develop a magnetic field. The magnetic field operates like a bastion in the face of solar winds. Over time, these winds would otherwise simply blow the atmosphere away.

Arno Rohrbach | alfa
Further information:
http://www.uni-bonn.de

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>